
HDF5.jl: Hierarchical Data Storage for Julia
Mark Kittisopikul (HHMI), Simon Byrne (Caltech), Mustafa Mohamad (UCalgary)

What is HDF5?
HDF5 stands for Hierarchial Data Format version 5 and is maintained by The HDF
Group, formerly part of the National Center for Supercomputing Appplications (NCSA).

HDF5 is a file format with an open specification.

HDF5 is a C Library and API.
HDF5 is a data model.

When to use HDF5
Store numeric array and attributes in nested groups.
Use it when you want to compactly store binary data.

When not to use HDF5

You have arrays of variable-length strings. Used fixed lengths strings instead.

You have tables of heterogeneous data. Consider using columnar layouts. Other
formats are more optimized for tables.

Related formats
HDF5 is used as a base for other formats

NetCDF - Network Common Data Form v4 (Unidata, UCAR)

MAT - MATLAB data files v7.3+
PyTables - Pandas

JLD/JLD2 - Julia Data Format

HDF5 Specification
The HDF5 specification is open and freely available.

https://docs.hdfgroup.org/hdf5/v1_14/_f_m_t3.html

https://docs.hdfgroup.org/hdf5/v1_14/_f_m_t3.html

What is HDF5.jl?
HDF5.jl is a wrapper around the HDF5 C Library.

It consists of

A low level interface, a direct mapping to the C API

A mid level interface, lightweight helpers
A high level interface, a Julia API

Related Julia Packages
HDF5_jll.jl, C Library from HDF Group (dependency of HDF5.jl)

MAT.jl, MATLAB files (depends on HDF5.jl)
JLD.jl, Julia Data Format (depends on HDF5.jl)

JLD2.jl, Julia Data Format 2: pure Julia implementation of a subset of HDF5

NetCDF.jl & NCDatasets.jl: wrappers for the NetCDF C library, which incorporates
HDF5

HDF5.jl Early and Recent Contributors
There are many contributors

Konrad Hisen initiated Julia's support for HDF5

Tim Holy and Simon Kornblith were the initial primary authors

Tom Short, Blake Johnson, Isaih Norton, Elliot Saba, Steven Johnson, Mike Nolta,
Jameson Nash

Justin Willmert improved many aspects C to Julia API interface

Other recent contributors: t-bltg, Hendrik Ranocha, Nathan Zimmerberg, Joshua
Lampert, Tamas Gal, David MacMahon, Juan Ignacio Polanco, Michael Schlottke-
Lakemper, linwaytin, Dmitri Iouchtchenko, Lorenzo Van Munoz, Jared Wahlstrand,
Julian Samaroo, machakann, James Hester, Ralph Kube, Kristoffer Carlsson

HDF5.jl Current Developers
Mustafa Mohamad, Mark Kittisopikul, and Simon Byrne are the current maintainers
Mark Kittisopikul has been expanding API coverage, especially with chunking

Simon Byrne has been working on package organization, filter interface, virtual
datasets, and parallelization

Special mention

Erik Schnetter for building HDF5 in Yggdrasil

What advantages does Julia bring to HDF5.jl?
HDF5.jl dynamically create types to match the stored HDF5 types.

HDF5.jl can use Julia's reflection capabilities to create corresponding HDF5 types.
HDF5.jl is easily extensible using multiple dispatch.

HDF5.jl can create callbacks for C for efficient iteration.

HDF5.jl wraps the C library directly in Julia via @ccall .
This is partially automated via Clang.jl and
https://github.com/mkitti/LibHDF5.jl .

https://github.com/mkitti/LibHDF5.jl

Basic HDF5.jl Usage
using HDF5

Write a HDF5 file
h5open("mydata.h5", "w") do h5f
 # Store an array
 h5f["group_A/group_B/array_C"] = rand(1024,1024)
 # Store an attribute
 attrs(h5f["group_A"])["access_date"] = "2023_07_21"
end

Read a HDF5 file
C = h5open("mydata.h5") do h5f
 # Access an attribute
 println(attrs(h5f["group_A"])["access_date"])
 # Load an array and return it as C
 h5f["group_A/group_B/array_C"][:,:]
end

Exploring a HDF5 file with HDF5.jl
julia> h5f = h5open("mydata.h5")

 HDF5.File: (read-only) mydata.h5
└─ group_A
 ├─ access_date
 └─ group_B
 └─ array_C

julia> C = h5f["group_A"]["group_B"]["array_C"][1:16,1:16]
16×16 Matrix{Float64}:
...

julia> close(h5f)

Structs and HDF5 Types
julia> struct Foo
 x::Int64
 y::Float64
 end

julia> HDF5.datatype(Foo)
HDF5.Datatype: H5T_COMPOUND {
 H5T_STD_I64LE "x" : 0;
 H5T_IEEE_F64LE "y" : 8;
 }

Reading and writing structs
julia> h5open("mystruct.h5", "w") do h5f
 h5f["Foo"] = [Foo(1, 3.0)]
 end
1-element Vector{Foo}:
 Foo(1, 3.0)

julia> h5open("mystruct.h5", "r") do h5f
 h5f["Foo"][]
 end
1-element Vector{NamedTuple{(:x, :y), Tuple{Int64, Float64}}}:
 (x = 1, y = 3.0)

julia> h5open("mystruct.h5", "r") do h5f
 read(h5f["Foo"], Foo)
 end
1-element Vector{Foo}:
 Foo(1, 3.0)

Chunking and Built-in Gzip Compression Usage
In HDF5.jl version 0.16 we introduced a new general filter keyword allowing for the
definition of filter pipelines.

using HDF5

h5open("simple_chunked.h5", "w", libver_bounds=v"1.12") do h5f
 h5ds = create_dataset(h5f, "gzipped_data", UInt8, (16,16),
 chunk=(4,4),
 filters=[HDF5.Filters.Deflate()],
 alloc_time = :early
)
end

Compression Filter Plugin Packages
Glue code written in Julia.

H5Zblosc.jl - Blosc.jl (Thank you, Steven G. Johnson)
H5Zzstd.jl - CodecZstd.jl

H5Zlz4.jl - CodecLZ4.jl

H5Zbzip2.jl - CodecBzip2.jl

H5Zbitshuffle.jl

Future: Let's figure out how to share these with JLD2.jl!

Chunking and Filter Plugin Usage
using HDF5, H5Zzstd

h5open("zstd_chunked.h5", "w", libver_bounds=v"1.12") do h5f
 h5ds = create_dataset(h5f, "zstd_data", UInt8, (16,16),
 chunk=(4,4),
 filters=[ZstdFilter(3)]
)
end

TODO: Use a package extension loading mechanism when CodecZstd.jl is present.

Using External Native Plugin Filters
The HDF5 C library has a filter plugin mechanism. Plugins are shared libraries located in
/usr/local/hdf5/lib/plugin or as specified by $HDF5_PLUGIN_DIR .

using HDF5.Filters

bitshuf = ExternalFilter(32008, Cuint[0, 0])
bitshuf_comp = ExternalFilter(32008, Cuint[0, 2])

data_A = rand(0:31, 1024)
data_B = rand(32:63, 1024)

filename, _ = mktemp()
h5open(filename, "w") do h5f
 # Indexing style
 h5f["ex_data_A", chunk=(32,), filters=bitshuf] = data_A
 # Procedural style
 d, dt = create_dataset(h5f, "ex_data_B", data_B, chunk=(32,), filters=[bitshuf_comp])
 write(d, data_B)
end

New with HDF5 1.12.3 and 1.14.0: Efficient Chunk
Based Iteration
Where are the compressed chunks and can we decompress them in parallel?

N Chunks H5Dchunk_iter H5Dget_chunk_info Ratio

64 2e-4 s 5e-4 s 2.4

256 7e-4 s 5e-3 s 6

1024 3e-3 s 5e-2 s 16

4096 1e-2 s 7e-1 s 57

16384 6e-2 s 1e2 s 208

The HDF5 C API does not allow for multithreaded
concurrency

The HDF5 C library is not directly compatible with multithreading for parallel I/O.
The preferred parallelization is via MPI.

There is a H5_HAVE_THREADSAFE compile time option that uses a recursive lock.

In HDF5.jl we have applied a ReentrantLock on all API calls.
It is now safe to use HDF5.jl with multithreading, but you may not see much of
an improvement.

Virtual datasets

Maps multiple datasets into a single dataset

Can be same or different files
Supports patterns for sequentially numbered files/datasets

e.g. consider a dataset made up of 100×10 blocks, across 4 files

data00.h5 , data01.h5 , etc.

space = dataspace((100,40))
create_dataset(h5f, "dataset", datatype, space;
 virtual=[HDF5.VirtualMapping(
 HDF5.hyperslab(space, (1:100, HDF5.BlockRange(1:10; count = -1))), # block pattern
 "./data0%b.h5", # filenames (%b block pattern)
 "data", # path to source dataset in file
 dataspace((100,10)) # view into source dataset
)]
)

Parallelization via MPI
Message Passing Interface (MPI) is an interface for single-program, multiple-data
(SPMD) parallelism.

Launch multiple processes running the same program
 mpiexec -n <nprocs> program ...

Programs determine what they should do based on their identifier (rank).
Each process determines what communication operations it should do
(messages)

Multiple implementations (Open MPI, MPICH, vendor-specific)
Widely used in HPC for large-scale distributed parallelism.

MPI.jl provides Julia bindings

Using MPI + HDF5

Load and initialize MPI

using MPI, HDF5
MPI.Init()

Pass MPI communicator to h5open , e.g.

h5 = h5open("data.h5", "w", MPI.COMM_WORLD)

Needs to be collective (all processes at the same time), with the same arguments.

File needs to be on accessible from all processes (e.g. on a shared file system if
distributed).

Usage otherwise same as normal:

metadata operatrions(create_dataset , writing attributes) should be done
collectively, with the same arguments.

reading/writing data can be independently per-process.
try to align chunks with processes

if collective, use dxpl_mpio=:collective option with
create_dataset / open_dataset

some limitations (e.g no datasets with variable-length strings).

Configuring HDF5 (in upcoming 0.17 release)

May want to use specific HDF5 library

interoperability with other languages (e.g. h5py)

linked against custom MPI binary

specific hardware features (burst buffers)

Preferences.jl to specify custom HDF5 binary

using Preferences, HDF5
set_preferences!(HDF5,
 "libhdf5" => "/path/to/your/libhdf5.so",
 "libhdf5_hl" => "/path/to/your/libhdf5_hl.so",
 force = true)

Applications
CliMa

Plots.jl backend

JLD.jl (dependency) and JLD2.jl (interop reference)
Checkpointing.jl

Summary
HDF5 is a format, C library, and data model for storing hierarchical information.

HDF5.jl is a wrapper providing high and low level access to the HDF5 library.

HDF5.jl now allows for multithreaded capability through locks and may expand
capabilities beyond that of HDF5 C library

HDF5.jl works with MPI.jl to allow for distributed multiprocessing

Questions?

Extra Slides and Advanced Topics
HDF5 Specification: Superblock and Hex Dump

Iteration

HDF5 Specification: Superblock
HDF5 structures are variably sized and use Bob Jenkin's Lookup3 checksum for
metadata integrity.

https://docs.hdfgroup.org/hdf5/v1_14/_f_m_t3.html#Superblock

https://docs.hdfgroup.org/hdf5/v1_14/_f_m_t3.html#Superblock

A HDF5 Hex Dump
00000000 89 48 44 46 0d 0a 1a 0a 03 08 08 00 00 00 00 00 |.HDF............|
00000010 00 00 00 00 ff ff ff ff ff ff ff ff 82 08 01 00 |................|
00000020 00 00 00 00 30 00 00 00 00 00 00 00 92 3c c0 2c |....0........<.,|
00000030 4f 48 44 52 02 20 a3 5c ae 64 a3 5c ae 64 a3 5c |OHDR. .\.d.\.d.\|
00000040 ae 64 a3 5c ae 64 78 02 12 00 00 00 00 ff ff ff |.d.\.dx.........|
00000050 ff ff ff ff ff ff ff ff ff ff ff ff ff 0a 02 00 |................|
00000060 01 00 00 06 14 00 00 01 00 09 7a 61 72 72 73 68 |..........zarrsh|
00000070 61 72 64 c3 00 00 00 00 00 00 00 00 40 00 00 00 |ard.........@...|
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

Iteration
For accessing data has two kinds of interfaces for accessing enumerated data:

1. h5a_get_name_by_idx(loc_id, obj_name, index_type, order, idx, name, size,
lapl_id)

2. h5a_iterate(obj_id::hid_t, idx_type::Cint, order::Cint, n::Ptr{hsize_t},
op::Ptr{Cvoid}, op_data::Any) , op is function pointer

The _by_idx calls are easy to use via a simple for loop but are very inefficient for
iterating over many items.

The _iterate calls require a C callback, op , and can be challenging to use but are
efficient.

Based on h5a_iterate we have created a new attrs API replacing the former
attributes API.

Concurrency with Direct I/O
The HDF5 C library provides byte offsets for continguous and chunked datasets

Currently, HDF5.jl allows contiguous datasets to be memory mapped into arrays
allowing for multithreaded reads.

With efficient chunk iteration, could we perform parallel decompression in HDF5.jl
by reading compressed chunks directly?

