Feature-based variance-sensitive quantitative clustering


[Up] [Top]

Documentation for package ‘vsclust’ version 1.6.0

Help Pages

vsclust-package VSClust provides a powerful method to run variance-sensitive clustering
artificial_clusters Synthetic/artificial data comprising 5 clusters
averageCond Calculate mean over replicates
calcBHI Calculate "biological homogeneity index"
ClustComp Function to run clustering with automatic fuzzifier settings (might become obsolete)
cvalidate.xiebeni Xie Beni Index of clustering object
determine_fuzz Determine individual fuzzifier values
estimClust.plot Plotting results from estimating the cluster number
estimClustNum Wrapper for estimation of cluster number
mfuzz.plot Plotting vsclust results
optimalClustNum Determine optimal cluster number from validity index
pcaWithVar Visualize using principal component analysis (both loadings and scoring) including the variance from the replicates
PrepareForVSClust Wrapper for statistical analysis
PrepareSEForVSClust Wrapper for statistical analysis for SummarizedExperiment object
protein_expressions Data from a typical proteomics experiment
runClustWrapper Wrapper for running cluster analysis
runVSClustApp Run VSClust as Shiny app
SignAnalysis Unpaired statistical testing
SignAnalysisPaired Paired statistical testing
SwitchOrder arrange cluster member numbers from largest to smallest
vsclust VSClust provides a powerful method to run variance-sensitive clustering
vsclust_algorithm Run the vsclust clustering algorithm