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Chapter 1

Structure of the Solver Input File

1.1 Introduction

Solving partial differential equation (PDE) models witle tsolver of EImer requires that a precise description
of the problem is given using the so-called solver input Eligfly referred to as the sif file. This file contains
user-prepared input data which specify the location of nfilshand control the selection of physical models,
material parameters, boundary conditions, initial cdndg, stopping tolerances for iterative solvers, etc. In
this chapter, the general structure of the file is descrivide.explain how the input data is organized into
different sections and describe the general keyword sywtzixh is used in these sections to define the
values of various model parameters and to control the soigiocedures.

In the case of simple problem setups the solver input file neawiitten automatically by the prepro-
cessor of ElImer software, so that knowing the solver inpatitirmat may be unnecessary. Creating a more
complicated setup, or using keywords introduced by the, lssvever, requires the knowledge of the file
format and keyword syntax.

In the following the general structure of the input file isffilsistrated by using simple examples, without
trying to explain all possibilities in an exhaustive mannére then describe the keyword syntax in more
detail, showing also how model parameters whose valuesdegesolution fields can be created. The later
chapters of this manual, and Elmer Models Manual, which $eswn describing the PDE models Elmer
can handle, provide more detailed material on specific sssiémer Tutorial Manual also gives complete
examples of solver input files.

1.2 The sections of solver input file

The material of the solver input file is organized into diffiet sections. Each section is generally started
with a row containing the name of the section, followed by mbar of keyword commands, and ended with
a row containing the worend. The names for starting new sections are

e Header
e Simulation

Constants

Body n

Material n

Body Force n

Equation n
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e Solver n
e Boundary Condition n
e Initial Condition n

Heren associated with the section name represents an integdifieieneeded for distinguishing between
sections of the same type. A basic keyword command includadection is nothing more than a statement
which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basicaligrayed without trying to explain all possi-
bilities in an exhaustive manner. The later chapters ofrttasual and EImer Models Manual provide more
detailed material on specific issues. Elmer Tutorial Maralsd gives complete examples of solver input
files.

Header section. The location of mesh files is usually given in the header sactDften this is also the
only declaration given in the header section. If the Elmesimiles (see Appendix A) are located in the
directory ./1d, the header section may simply be

Header
Mesh DB "." "1d"
End

Note that separate equations can nevertheless be discretiing different meshes if the location of mesh
files is given in the solver section described below.

Simulation section. The simulation section is used for giving general informatthat is not specific
to a particular PDE model involved in the simulation. Thiformation describes the coordinate system
used, indicates whether the problem is stationary or elawlaty, defines the file names for outputting, etc.
Without trying to describe many possibilities and the detaii commands, we only give the following simple
example:

Simulation
Coordinate System = "Cartesian 1D"
Coordinate Mapping(3) = 1 2 3
Simulation Type = Steady State
Steady State Max lterations = 1
Output Intervals(l) = 1
Post File = "ldheat.ep”
Output File = "ldheat.dat"

End

Constants section. The constants section is used for defining certain phys@atants. For example the
gravity vector and the Stefan-Boltzmann constant may baeefising the commands

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
End

If the constants are not actually needed in the simulathoa section can also be left empty.

Body, material, body force and initial condition sections. The Elmer mesh files contain information on
how the computational region is divided into parts refetoeas bodies. A body section associates each body
with an equation set, material properties, body forces,mitidl conditions by referring to definitions given
in a specified equation section, material section, bodyefeection, and initial condition section. To manage
to do this, the different sections of the same type are djatghed by integer identifiers that are parts of the
section names. Note that the integer in the body section maareidentifier for the body itself.

For example, one may define

CSC - IT Center for Science [@)sv-nD |
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Body 1
Material = 1
Body Force = 1
Equation = 1
Initial Condition = 2
End

Material properties, body forces, an equation set, anéhinitbnditions are then defined in the material
section

Material 1

End

the body force section

Body Force 1

End

the equation section

Equation 1

End

and the initial condition section

Initial Condition 2

End

What material properties and body forces need to be spedéipends on the mathematical models involved
in the simulation, and the initial condition section useddiing initial values is only relevant in the so-
lution of evolutionary problems. We here omit the discussib these very model-dependent issues; after
reading this introductory chapter the reader should betahlederstand the related documentation given in

Elmer Models Manual, which focuses on describing the diffiémathematical models, while the contents
of equation section will be described next.

Equation and solver sections. Equation section provides us a way to associate each botyavset of
equation solvers. That is, if the set defined consists of rnifvaia one equation solver, several physical
phenomena may be considered to occur simultaneously owesatine region of space. Individual equation
solvers are actually defined in solver sections, the costeh&n equation section being basically a list of
integer identifiers for finding the solver sections that defire solvers. The keyword commands given in the
solver sections then control the selection of physical nmdiaearization procedures of nonlinear models,
the selection of solution methods for resulting linear eiguis, convergence tolerances, etc.
For example, if only two solvers are needed, one may simginéa list of two solver identifiers

Equation 1
Active Solvers(2) = 1 2
End

Then the solver definitions are read from the solver sections
Solver 1
End

and

CSC - IT Center for Science [@)sv-nD |
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Solver 2
End
Finally, we give an example of solver definitions, withowitig to explain the commands at this point:

Solver 1

Equation = "Poisson"

Variable = "Potential"

Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct"

Steady State Convergence Tolerance = 1e-06
End

Boundary condition section. Boundary condition sections define the boundary condifionthe different
equations. The Elmer mesh files contain information on habthundaries of the bodies are divided into
parts distinguished by their own boundary numbers. The kegiWarget Boundaries is usedto list the
boundary numbers that form the domain for imposing the bagndondition. For example the declaration

Boundary Condition 1
Target Boundaries(2) = 1 2

End
means that the boundary condition definitions that followaan the two parts having the boundary numbers

1 and 2.

We finally note that some commands, such as comments staitfedne symbol ! and MATC expres-
sions described below, may also be placed outside sectforitias. An exception of this type is also the
command

Check Keywords "Warn"

usually placed in the beginning of the input file. When thismmaeand is given, the solver outputs warning
messages if the input file contains keywords that are nadig the file of known keywords. If new
keywords are introduced, misleading warning messageseandided by adding the new keywords to the
keyword fileSOLVER.KEYWORD®Bcated in the directory of the shared library files of El@@ver.

1.3 Keyword syntax

As already illustrated, a basic keyword command used indhesinput file is a statement which sets the
value of a solution parameter with the equal sign. Such a camahin its full form also contains the data
type declaration; for example

Density = Real 1000.0
Valid data types generally are

o Real

Integer

Logical
e String

o File

CSC - IT Center for Science [@)sv-nD |
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If the keyword is listed in the keyword fiIBOLVER.KEYWORD® e data type declaration may be omitted.
Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of speaata type, with the array size
definition associated with the keyword. We recall our pragi@xamples of the equation and boundary
condition sections, where we defined two lists of integensgihe commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defmed a

My Parameter Array(3,3) = Real 1 2 3 \
456 \
789

Defining parameters depending on field variables. Most solver parameters may depend on time, or on
the field variables defined in the current simulation run. isdependencies can generally be created by
means of tabular data, MATC functions, or Fortran functidi&TC has the benefit of being an interpreted
language, making an additional compilation step with a denpnnecessary.

Simple interpolating functions can be created by meanstufidga data. The following example defines
the parameteDensity the value of which depends on the variabeEmperature

Density = Variable Temperature
Real
0 900
273 1000
300 1020
400 1000
End

This means that the value @fensity is 900 whenTemperature is 0, and the following lines are
interpreted similarly. EImer then uses linear interpalatio approximate the parameter for argument values
not given in the table. If the value of the independent vdeab outside the data set, the first or the last
interpolating function which can be created from the tatadlavalues is used to extrapolate the value of the
parameter.

If the field variable has several independent componenth, asithe components of displacement vector,
the independent components may be used as arguments inteifudefinition. For example, if a three-
component field variable is defined in a solver section usiegcommands

Variable = "Displ"
Variable DOFs = 3

then the solver of EImer knows, in addition to the three-congnt vectoDispl , three scalar fieldBispl
1, Displ 2 andDispl 3 . These scalar fields may be used as independent variablasameter defini-
tions, and used in the definitions of initial and boundaryditions, etc.

More complicated functions can be defined using MATC langudgere the basic usage of MATC in
connection with the solver input file is illustrated; for ad@ional documentation, see a separate manual
for MATC. For example, one may define

Density = Variable Temperature
MATC "1000# (1-1.0e-4 = (tx-273))"

CSC - IT Center for Science [@)sv-nD |
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This means that the parameRgnsity depends on the value @emperature as
p=po(l = B(T —To)), (1.1)

with po = 1000, 3 = 10~* andT, = 273. Note that the value of the independent variable is knowix as
in the MATC expression.

If the independent variable has more than one componenvattiebletx will contain all the compo-
nents in valuesx(0) ,tx(1) ,...tx(n-1) , wheren is the number of the components of the independent
variable. A MATC expression may also take several scalarraents; one may define, for example,

My Parameter = Variable Time, Displ 1
Real MATC "..."

The values of the scalar fieldsme andDispl 1 can then be referred in the associated MATC expression
by the name#x(0) andtx(1) , respectively.

In addition to using MATC functions, Fortran 90 functionsyredso be used to create parameter defini-
tions, etc. In the same manner as MATC functions are used, ayedafine

Density = Variable Temperature
Procedure "filename" "proc"

In this case the file "filename" should contain a shareabléUsix) or .dIl (Windows) code for the user
function whose name is "proc”. The call interface for thetféor function is as follows

FUNCTION proc( Model, n, T ) RESULT(dens)
USE DefUtils)
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000 = (1-1.0d-4(T-273.0d0))
END FUNCTION proc

The Model structure contains pointers to all informatiooattthe model, and may be used to obtain field
variable values, node coordinates, etc. The argument e imtlex of the node to be processed, and T is the
value of the independent variable at the node. The functionlsl finally return the value of the dependent
variable.

The independent variable can also be composed of seveegdémdent components. We may thus define

Density = Variable Coordinate
Procedure "filename" "proc"

Now the argument T in the Fortran function interface sho@dlbeal array of three values, which give the
X,y and z coordinates of the current node.

Parameterized keyword commands. The solver input file also offers possibilities for creatpayameter-
ized commands that utilize MATC. In the solver input file apession following the symbol $ is generally
interpreted to be in MATC language. If the solver input filetains the lines

$solvertype = “lterative"
$tol = 1.0e-6

then one may define, e.g.,

Solver 1

Linear System Solver = $solvertype
Linear System Convergence Tolerance = $tol

CSC - IT Center for Science [@)sv-nD |
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End
Solver 2

Linear System Solver = $solvertype
Linear System Convergence Tolerance = $100

End

* tol

CSC - IT Center for Science
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Chapter 2

Finite Element Utilities

2.1 Introduction

This section decribes Elmer Solver utilities related dise Finite Element Method (FEM). Finite element
method is a common procedure to solve differential and malezuations numerically.

2.2 Theory

For higher-order finite elements see the separate chapter.

14



Chapter 3

Solution Methods for Linear Systems

3.1 Introduction
Discretization and linearization of a system of partiafatiéntial equations leads to linear systems
Az = b, (3.1)

where A andb are of orders: x n andn x 1, respectively. A specific feature of the coefficient matfix
resulting from the finite element discretization is thatitinetrix is sparse, i.e. only a few of the matrix entries
in each row differ from zero. In many applications the systam also have a very large orderso that the
chief part of the computation time in performing the simiglatis typically spent by solvers for the linear
systems.

Solution methods for linear systems fall into two large gatées: direct methods and iterative methods.
Direct methods determine the solution of the linear systeacity up to a machine precision. They perform
in a robust manner leading to the solution after a predetexdchinumber of floating-point operations. Never-
theless, the drawback of direct methods is that they arenssipein computation time and computer memory
requirements and therefore cannot be applied to the solofiinear systems of very large order. The ef-
ficient solution of large systems requires generally theafsterative methods which work by generating
sequences of improving approximate solutions.

ElmerSolver provides access to both direct and iterativehats. The iterative methods available fall
into two main categories: preconditioned Krylov subspae¢hmds and multilevel methods. Iteration meth-
ods that combine the ideas of these two approaches may alsons&ucted. Such methods may be very
efficient leading to a solution after a nearly optimal numtfesperation counts.

The development of efficient solution methods for lineateys is still an active area of research, the
amount of literature on the topic being nowadays vast. Theddithe following discussion is to provide
the user the basic knowledge of the solution methods availalEImerSolver. The detailed description of
methods is omitted. For a more comprehensive treatmenetuer is referred to references mentioned.

3.2 Direct methods

A linear system may be solved in a robust way by using dire¢chods. There are two different options
for direct methods in EImerSolver. The default method zg#i the well-known LAPACK collection of
subroutines for band matrices. In practice, this soluti@thmd can only be used for the solution of small
linear systems as the operation count for this method isasror.

The other direct solver employs the UMFPACK routines to s@parse linear systemy.| UMFPACK
uses the Unsymmetric MultiFrontal method. In practice iyrba the most efficient method for solving 2D
problems as long as there is enough memory available.

It should be noted that the success of the direct solversispesry much on the bandwidth of the sparse
matrix. In 3D these routines therefore usually fail miséyab

15
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3.3 Preconditioned iteration methods

ElmerSolver contains a set of Krylov subspace methods fitérative solution of linear systems. These
methods may be applied to the solution large linear systernspid convergence generally requires the use
of preconditioning.

3.3.1 Krylov subspace methods

The Krylov subspace methods available in EImerSolver are

e Conjugate Gradient (CG)

Conjugate Gradient Squared (CGS)

Biconjugate Gradient Stabilized (BiCGStab)

Transpose-Free Quasi-Minimal Residual (TFQMR)

Generalized Minimal Residual (GMRES)

Both real and complex systems can be solved using thesedthigsr For the detailed description of these
methods see3] and [4].

A definite answer to the question which the best iteratiorhméfor a particular case is cannot be given.
In the following only some remarks on the applicability oétimethods are made.

The CG method is an ideal solution algorithm for the casegatiee coefficient matri¥l is symmetric
and positive definite. The other methods may also be appdi¢de cases wherd is non-symmetric. It
is noted that the convergence of the CGS method may be iaegtihe BiCGStab and TFQMR methods
are expected to give smoother convergence. The GMRES mgthmdates iterates satisfying an optimality
condition, but the computational work and computer memenguirements of the method increase as the
number of iterations grows. In practice one often has to usestarted version of this method based on
restarting the iteration after. iterations. The convergence of the method may however bsiderably
slower than that of full GMRES. The choice of has to be controlled by the user. Unfortunately, general
guidelines for determining a reasonable valuerfocannot be given as this value is case-dependent.

3.3.2 Preconditioning strategies

The performance of iteration methods depends greatly osgletrum of the coefficient matrit. The rate
at which an iteration method converges can often be imprbyedansforming the original system into an
equivalent one that has more favorable spectral propefihgs transformation is called preconditioning and
a matrix which determines the transformation is called agnéitioner.

In ElImerSolver preconditioning is done by transformiddl) into the system

AM ™'z =0, (3.2)

where the preconditioneY/ is an approximation tod andz is related to the solutiom by 2 = Mzx. In
practice, the explicit construction of the inves&~! is not needed, since only a subroutine that for given
returns a solutiom to the system

Mu = (3.3)

is required.

ElmerSolver provides several preconditioning strategiggese include Jacobi preconditioning and in-
complete factorization preconditioners. The preconditig step 8.3) may even be defined in terms of some
iteration method for the systerB.Q) with M = A. This possibility is considered in Secti@.3below.

The Jacobi preconditioner is simply based on takifigo be the diagonal ofl. More sophisticated pre-
conditioners may be created by computing incomplete LUbfgzations ofA. The resulting preconditioners
are referred to as the ILU preconditioners. This approaegésgihe preconditioner matrix/ in the form
M = LU whereL andU are lower and upper triangular with certain elements tHaean the factorization
process ignored.

CSC - IT Center for Science [@)sv-nD |
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There are several ways to choose a set of matrix positiorisatkaallowed to be filled with nonzero
elements. ILU preconditioners of fill levéY referred to as the ILU(N) preconditioners are built so that
ILU(0) accepts nonzero elements in the positions in whidihas nonzero elements. ILU(1) allows nonzero
elements in the positions that are filled if the first step ofi€#an elimination is performed fot. ILU(2)
accepts fill in positions that are needed if the next step afsSian elimination is performed with ILU(1)
factorization, etc.

Another strategy is based on numerical tolerances. Théirespreconditioner is referred to as the ILUT
preconditioner. In the creation of this preconditioner &an elimination is performed so that elements of
a given row of the LU factorization are obtained but only edets whose absolute value (scaled by the norm
of all values of the row) is over a given threshold value a@=pted in the preconditioner matrix.

Obviously, the additional computation time that is spemtrgating the preconditioner matrix and solving
systems of the type3(3) should be compensated by faster convergence. FindingtamapLU precondi-
tioner for a particular case may require the use of trial amnoreStart with ILU(0) and try to increase the
fill level N. As N increases, more and more elements in the incompleteattdfization of the coefficient
matrix are computed, so the preconditioner should in ppiedie better and the number of iterations needed
to obtain a solution should decrease. At the same time theamemsage grows rapidly and so does the time
spent in building the preconditioner matrix and in applythg preconditioner during iterations. The same
applies to the ILUT preconditioner with decreasing thrédivalue.

3.4 Multilevel methods

A class of iterative methods referred to as multilevel mdthprovides an efficient way to solve large linear
systems. For certain class of problems they perform neatiynally, the operation count needed to obtain a
solution being nearly of ordet. Two different multilevel-method approaches are avadablElmerSolver,
namely the geometric multigrid (GMG) and algebraic muldgAMG).

3.4.1 Geometric multigrid

Given a meslt¥; for the finite element discretization of problem the geometrultigrid method utilizes a
set of coarser meshég, k = 2, ..., N to solve the linear system arising from the discretizat®ne of the
fundamental ideas underlying the method is based on theoideearse grid correction. That is, a coarser
grid is utilized to obtain an approximation to the error ie #ipproximate solution of the linear system. The
recursive application of this strategy leads us to muliigniethods.

To utilize different meshes multigrid methods require tegalopment of methods for transferring vec-
tors between fine and coarse meshes. Projection operagoused to transfer vectors from a fine m&@zh
to a coarse mesf,; and will be denoted by, ™', while interpolation operato’, , transfer vectors from
a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursivgaithm: GivenA, b and an initial guessg
for the solution of the systemz = b seti = 1 and do the following steps

1. If i = N, then solve the systemiz = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithmgaiven number of times to obtain a new
approximate solution.

3. Perform coarse grid correction by starting a new appdoadf this algorithm withA = If“AI;'H,
b=TI"(Ay —b),i =i+ 1and the initial guess = 0.

4. Compute a new approximate solution by settjng v + If+1e

5. Do post-smoothing by applying some iterative algoritlome given number of times to obtain a new
approximate solution.

6. If the solution has not yet converged, go to point 2.
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3. Solution Methods for Linear Systems 18

In ElImerSolver one may choose the Jacobi, CG or BiCGStalrittigpas the method for smoothing itera-
tions.

The full success of multigrid methods is based on the faderabmbination of the properties of ba-
sic iteration methods and methods for transferring vediete/een meshes. The smoothing iterations give
rapid convergence for oscillatory solution componentdevtwarse grid correction entails an efficient solu-
tion method for smooth solution components. For a comprahermtroduction to the geometric multigrid
method the reader is referred @.

3.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied imxave do not have the luxury of having
a set of appropriate hierarchical meshes. The alternatitieei algebraic multigrid (AMG) method which
uses only the matrix¥l to construct the projectors and the coarse level equatidvkG is best suited for
symmetric and positive semidefinite problems. For otheesyqf problems the standard algorithm may fail.
For more information on AMG see referené&. [

The AMG method has two main phases. The set-up phase indluelescursive selection of the coarser
levels and definition of the transfer and coarse-grid opesafl he solution phase uses the resulting compo-
nents to perform a normal multigrid cycling until a desiredaracy is reached. The solution phase is similar
to that of the GMG.

Note that the AMG solvers in ElmerSolver are not fully matuféey may provide good solutions for
some problems while desperately failing for others.

Classical Ruge-Stiiben algorithm

The coarsening is performed using a standard Ruge-Stlla@sesong algorithm. The possible connections
are defined by the entries in the matrix The variable is strongly coupled to another variabléf

a;j < —c_max|a;| OF a;; > ¢y max|akl, (3.4)

where0 < ¢ < 1 and0 < ¢, < 1 are parameters. Typically. =~ 0.2 andcy ~ 0.5. Once the negative
(P~) and positive ) strong couplings have been determined the variables idediinto coarse() and
fine (F) variables using the standard coarsening scheme.

The interpolation matrix may be constructed using €& -splitting and the strong couplings of the
matrix. The interpolation of coarse nodes is simple as tlegyain unchanged. The interpolation of fine
nodes starts from the fact the smooth eeronust roughly satisfy the conditiode = 0 or

ai;e; + Z ajje; = 0. (35)
i
By manipulation
ai;e; + Q4 Z aije; + B; Z aij€e; = 0, (3.6)
jecnp; jecnp;t
where > 5
e Qg ot Qg
a;= =2 7 and g = S 2 (3.7)

ZJ’GCQPI ij E,jeCmP;r aij

The interpolation thus becomes
€; = Z Wij€j with Wij = { _aiaij/aii’ J € P7, ’ (38)

' +
Pt —Biaij/aii, j€ P

This is known adirect interpolation It may be modified by using also the strolgnodes in the
interpolation. This means that in formufa.9) the following elimination is made for eaghe F N P;

€; — — Z ajkek/ajj. (39)

keCNP;
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This is known astandard interpolationIn practice it means that the number of nodes used in thgpiote
lation is increased. This may be important to the qualityhef interpolation particularly if the number of
directC-neighbors is small.

After the interpolation weights have been computed the lestatoefficients may be truncated if they
are smallj.e, w; < ¢, max |wg|, wherec,, =~ 0.2. The other values must accordingly be increased so that
the sum of weights remains constant. The truncation is &asenpreventing the filling of the coarse level
matrices.

Cluster multigrid

There is also an implementation of the agglomeration ortetusultigrid method. It is a variant of the
algebraic multigrid method. In this method the componenésgrouped and the coarse-level matrices are
created simply by summing up the corresponding rows ancasu In other words, the projection matrix
includes just ones and zeros.

The cluster multigrid method should be more robust for peotd where it is difficult to generate an
optimal projection matrix. However, for simple problemssiusually beaten by the standard Ruge-Stiiben
method.

3.4.3 Preconditioning by multilevel methods

Multilevel methods are iteration methods on their own betythan also be applied as preconditioners for
the Krylov subspace methods. This preconditioning apgr@acresponds to taking/ = A in (3.3) and
performing an inaccurate solution of the resulting systesimgimultilevel methods to obtaim. A rather
mild stopping criterion may be used in this connection. Bnelitioning by multilevel methods may lead to
very efficient solution methods for large linear systems.

3.5 Keywords related to linear system solvers
The following keywords may be given in Solver section of thiver input file (.sif file).

Linear System Solver String
Using this keyword the type of linear system solver is seléct his keyword may take the following
values:
e Direct
e lterative
e Multigrid

Herelterative andMultigrid refer to the Krylov and multilevel methods, respectively.

Linear System Direct Method String
If the value of theLinear System Solver keyword is set to b®irect , one may choose a
band matrix solver with the valuBanded or a sparse matrix solver with the valUenfpack . The
default isBanded .

Linear System Iterative Method String
If the value of theLinear System Solver keyword is set to b#erative , one should choose
a Krylov method by setting the value of this keyword to be ohthe following alternatives:
e CG
e CGS
BiCGStab
TFQMR
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e GMRES
See also th!G Smoother keyword.

Linear System GMRES Restart Integer [10]
The restart parameter for the GMRES method may be given using this keyword.

Linear System Preconditioning String
A preconditioner for the Krylov methods may be declared hyirs the value of this keyword to be
one of the following alternatives:

e None

Diagonal

e ILUn , where the literah may take values 0,1,...,9.
e ILUT

Multigrid

See also th#1G Preconditioning keyword.

Linear System ILUT Tolerance Real [0.0]
This keyword is used to define the value of the numerical éawlee for the ILUT preconditioner.

Linear System Convergence Tolerance Real [0.0]
This keyword is used to define a stopping criterion for theldwrynethods. The approximate solution
is considered to be accurate enough if the iterate satisfies

|| Az — b]|
1L —

wheree is the value of this keyword. See alstG Tolerance .

Linear System Max Iterations Integer [0]
This keyword is used to define the maximum number of the itmmathe Krylov methods are permit-
ted to perform. If this limit is reached and the approximateton does not satisfy the stopping crite-
rion, EImerSolver either continues the run using the cumpproximate solution as the solution of the
system or aborts the run depending on the valueiméar System Abort Not Converged
keyword. See alsMG Max lIterations  keyword.

Linear System Abort Not Converged Logical [True]
If the value of this keyword is set to Ague , EImerSolver aborts the run when the maximum number
of iterations the algorithm is permitted to perform is rezattand the approximate solution does not
satisfy the stopping criterion. Otherwise the run will bentioued using the current approximate
solution as the solution of the system (this may lead to tiesiat later steps of computation).

Linear System Residual Output Integer [1]
By default the iterative algorithms display the value of {(kealed) residual after each iteration step.
Giving a valuen > 1 for this keyword may be used to display the residual onlyraftery n iterations.
If the value 0 is given, the residual output is disabled.

Linear System Precondition Recompute Integer [1]
By default the ElmerSolver computes the preconditionemwdrew application of iterative algorithm
is started. If the value of this keyword is set to bethe preconditioner is computed only after
n successive subroutine calls for linear systems arisiog fsame source. This may speed up the
solution procedure especially in cases where the coeffiortrix does not change much between
successive subroutine calls. On the other hand if the caffimatrix has changed significantly, the
preconditioner may not be efficient anymore.
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Optimize Bandwidth Logical [True]
If the value of this keyword is set to berue , the Cuthill-McKee bandwidth optimization scheme is
used to order the unknowns in such a way that band matricdsedaandled efficiently. The bandwidth
optimization is recommended when the direct solver or inglete factorization preconditioners are
used.

The keywords beginning witMGare activated only if either theinear System Solver orLinear
System Preconditioning keyword has the valuBlultigrid . If a multigrid method is used as the
linear system solver, some keywords starting WwitBmay be replaced by corresponding keywords starting
with phraselinear System . It should be noted that in the case of a multigrid solverdheme some
limitations to what values the keywords starting with thegsleLinear System may take, see below.

MG Levels Integer [1]
This keyword is used to define the number of levels for the igridt method.

MG Equal Split Logical [False]
A hierarchy of meshes utilized by the multigrid method maygeeerated automatically by setting
the value of this keyword to b&rue . The coarsest partitioning must be supplied by the usersand i
declared in the usual way in the Header section of the satyertifile. The other meshes are obtained
using an equal division of the coarser mesh. The solutioh@ptoblem will be sought for the finest
mesh.

MG Mesh Name File
A hierarchy of meshes utilized by the multigrid method maysbpplied by the user. A base name of
the mesh directories is declared using this keyword. Theasasfimesh directories must be composed
of the base name appended with a level number such that iatbefiame isngridmesh , the mesh
directories should have namegridmeshl , mgridmesh2 , etc. The meshes are numbered starting
from the coarsest mesh. In addition, the finest mesh must derdd in the Header section of the
solver input file. It should be noted that th&5 Equal Split keyword must be set to bEalse
to enable the use of user-supplied meshes.

MG Max lIterations Integer [0]
If a multigrid method is used as a preconditioner for the Kwinethods, the value of this keyword
defines the maximum number of iterations the multigrid mettsoallowed to perform to solve the
preconditioning equatior3(3). Usually one or two iterations are sufficient. If a multdyrnethod
is the linear system solver, the use of this keyword is sintdathat of theLinear System Max
Iterations keyword.

MG Convergence Tolerance Real [0.0]
If a multigrid method is used as a preconditioner for the Kwyinethods, this keyword defines the
solution accuracy for the preconditioning equatidr8). This keyword is not usually needed if tM&G
Max lIterations keyword has a small value. If a multigrid method is the linggstem solver,
the use of this keyword is similar to that of thenear System Convergence Tolerance
keyword.

MG Smoother String
This keyword defines the algorithm for pre- and post-smagthilt may take one of the following
values:
e Jacobi
e CG
e BiCGStab
If the linear system solver is a multigrid method, th@ear System lIterative Method

keyword may be used instead of this keyword, but only theetlalgorithms mentioned here can be
applied.
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MG Pre Smoothing Iterations Integer [0]
This keyword defines the number of pre-smoothing iterations

MG Post Smoothing Iterations Integer [0]
This keyword defines the number of post-smoothing iteration

MG Preconditioning String
This keyword declares the preconditioner for the algorithinich is used in smoothing iterations. It
may take one of the following values:

e None
e ILUn , where the literah may take values 0,1,...,9.
o ILUT

Note that this keyword is not related to using multigrid noetlas a preconditioner. It is also noted
that preconditioning the smoothing algorithms does notstework well if a multigrid method is
used as a preconditioner for Krylov methods.

MG ILUT Tolearance Real [0.0]
This keyword defines the numerical tolerance for the ILUTcpreditioner in connection with smooth-
ing iterations.

The keywords for the algebraic multigrid solver are in aégpgrt the same as for the geometric multigrid.
There are however some keywords that are related only to AMG.

MG Lowest Linear Solver Limit Integer
This value gives a lower limit for the set of coarse nodesrafteich the recursive multilevel routine
is terminated. A proper value might be around 100.

MG Recompute Projector Logical
This flag may be used to enforce recomputation of the prajexdoh time the algebraic multigrid
solveris called. The defaultizalse as usually the same projector is appropriate for all corrjmuns.

MG Eliminate Dirichlet Logical
At the highest level the fixed nodes may all be set to be coamnse their value is not affected by the
lower levels. The default iSrue

MG Eliminate Dirichlet Limit Real
Gives the maximum fraction of non-diagonal entries for @dbilet node.

MG Smoother String
In addition to the selection for the GMG optisor (symmetric over relaxation) is possible.

MG SOR Relax String
The relaxation factor for the SOR method. The defaultis 1.

MG Strong Connection Limit Real
The coefficient_ in the coarsening scheme. Default is 0.25.

MG Positive Connection Limit Real
The coefficient. in the coarsening scheme. Default is 1.0.

MG Projection Limit Real
The coefficient,, in the truncation of the small weights. The defaultis 0.1.

MG Direct Interpolate Logical
Chooses between direct and standard interpolation. TlailiéFalse .

MG Direct Interpolate Limit Integer
The standard interpolation may also be applied to nodesamnitha small number of coarse connec-
tion. This gives the smallest number of nodes for which dirgerpolation is used.
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Finally, there are also some keywords related only to thsteling multigrid.

MG Cluster Size Integer
The desired choice of the cluster. Possible choices ar4,3,3,.and zero which corresponds to the
maximum cluster.

MG Cluster Alpha Real
In the clustering algorithm the coarse level matrix is nairopl for getting the correct convergence.
Tuning this value between 1 and 2 may give better performance

MG Strong Connection Limit Real
This is used similarly as in the AMG method except it is reddt® positive and negative connections
alike.

MG Strong Connection Minimum Integer

If the number of strong connections with the given limit isadl@r than this number then increase the
set of strong connection if available connections exist.

3.6 Implementation issues

3.6.1 The sparse matrix storage

To be efficient, iteration methods require that a matrixtweproduct for sparse matrices is efficiently im-
plemented. A special storage scheme called the Compresse®®rage (CRS)] is used in ElImerSolver
to store only those matrix coefficients that differ from zero

The matrix structure is defined in modulgpes as:

TYPE Matrix_t
INTEGER :: NumberOfRows

REAL(KIND=dp), POINTER :: Values(:)
INTEGER, POINTER :: Rows(:), Cols(:), Diag(:)

END TYPE Matrix_t

The matrix type has several additional fields, but the basiage scheme can be implemented using the
fields shown. The arrayalues is used to store the nonzero elements of the coefficientxndthie array
Cols contains the column numbers for the elements stored in tlag ®ialues , while the arrayRows
contains indices to elements that start new rows. In adgi®ow(n+1) gives the number of nonzero
matrix elements + 1. The arr&diag is used to store the indices of the diagonal elements.

For example, to go through the matrix row by row the followlagp may be used

USE Types

TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp):: val
INTEGER :: i, j, row, col

DO i=1, A % NumberOfRows

PRINT =, 'Diagonal element for row ', i, " is ', A % Values( A % Diag(i) )
DO j=A % Rows(i), A % Rows(i+1)-1
row = i

col = A % Cols()

val = A % Values())
PRINT =%, 'Matrix element at position: ', row,col, ' is ’, val
END DO
END DO
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3.6.2 Subroutine calls

Most of the functionality of the sparse linear system solvkethe ElmerSolver is available by using the
function call

Norm = DefaultSolve().

The return valu&lorm is a norm of the solution vector.

Sometimes it may be convenient to modify the linear systeforbesolving it. A Fortran function which
performs this modification can be written by the user withlaene of the function being declared in the
solver input file. For example, this technique may be use@fmed a user-supplied linear system solver.

If the name of the user-supplied Fortran functiopiec and it can be found in the file having the name
Filename |, the declaration

Before Linsolve File Filename proc

in the solver input file has the effect that the function wil alled just before the default call of linear
system solver. The arguments the function can take are fixédwe declared as

FUNCTION proc( Model, Solver, A, b, x, n, DOFs, Norm ) RESULT( stat)
USE SolverUtils
TYPE(Model_t) :: Model
TYPE(Solver_t) :: Solver
TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp) :: b(:), x(:), Norm
INTEGER :: n, DOFs, stat

END FUNCTION proc

Here the Model structure contains the whole definition of ¢élraer run. The Solver structure contains
information for the equation solver from which this linegstem originates. The coefficient matés in
CRS formatp is the right-hand side vector, axdcontains the previous solution. The argumeris the
number of unknowns, andOFsis the number of unknowns at a single node.

If the return value from this function is zero, the (possjhtyodified linear system is solved after the
return. If the return value is 1, the linear system is assutodzk already solved and the vectoshould
contain the result. It is noted that the user-supplied Bartunction may also call the default linear equation
solver within the function, i.e. one may write the subroattall

CALL SolveLinearSystem( A, b, x, Norm, DOFs, Solver )

HereA andb may be modified so that the linear system which is solved netliensame as the input system.
In a similar way the user may also supply a user-defined Foftnaction which will be called just after
the solution of linear system. This is done using the detitara

After Linsolve File Filename proc

in the solver input file. The arguments of this function are §ame as for a function in the context of
Before Linsolve keyword.
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Chapter 4

Nonlinear System Options

4.1 Introduction

Numerical methods in linear algebra are usually intendedte solution of linear problems. However,
there are many problems which are not linear in nature. Thdimearity may a intrinsic characteristics
of the equation, such as is the case with intertial forceh@Navier-Stokes equation. The nonlinerity
might also a result of nonlinear material parameters thpede on the solution. What ever the reason for
nonlinearity the equations in Elmer are always first lineedito the form

Aui—1)u; = b(ui—1), (4.1)

wherei refers to the iteration cycle.

How the equations are linearized varies from solver toagroffor example, in the Navier-Stokes solver
there are tow different methods — the Picard linearizatioth the Newton linearization that may be used.
Also a hybrid scheme where the Picard type of scheme is sadtth the Newton kind of scheme when
certain criteria are met is available. Therefore this sectvill not deal with the particular linearization
technique of different solver but tries to give some lighthie generic keywords that are available. Some
keywords may also be defined in the Models Manual relatedrticpéar solvers.

In multiphysical simulations there are also a number of kayis related to the solution of coupled sys-
tems. Basically one may may define how many times a systenuattiens is solved repeatedly at maximum
and how what are the convergence criteria of the individokkss that must be met simulataneously.

4.2 Keywords related to solution of nonlinear systems

These keywords are located in the Solver section of eaclesdlvequited at all.

Nonlinear System Convergence Measure String
The change of solution between two consecutive iteraticamgloe estimated by a number of different
measures which are envoked by valumsm, solution  andresidual . The default way of

checking for convergence is to test the change of norm
6 = 2 [|ui| = |wi—1|[/(Jus] + ui-1]). (4.2)

This measure is rather liberal since the norm of two solgtioray be the same even though the
solutions would not. Therefore it is often desirable to labkhe norm of change,

0= 2% |u1 — u1_1|/(|ul| + |Ui—1|)- (43)

The third choice is to use a backward norm of the residual e/ttes old solution is used with the new
matrix.
0 = |Ax;_1 — b|/|b]. (4.4)
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In the current implementation this norm lags one step behintttherefore always performs one extra
iteration.

Nonlinear System Norm Degree Integer
The choice of norms used in the evaluation of the convergemessures is not self evident. The
default is theL2 norm. This keyword may be used to replace thislbbynorm where values = 0
corresponds to the infinity (i.e. maximum) norm.

Nonlinear System Norm Dofs Integer
For vector valued field variables by default all componentsused in the computation of the norm.
However, sometimes it may be desirable only to use some of.tfiéis keyword may be used to give
the number of components used in the evaluation. For exanmptbe Navier-Stokes equations the
norm is only taken in respect to the velocity componentsaevpikessure is omitted.

Nonlinear System Convergence Absolute Logical
This keyword may be used to enforce absolute convergenceuresarather than relative. The default
is False .

Nonlinear System Convergence Tolerance Real

This keyword gives a criterion to terminate the nonlinearration after the relative change of the norm
of the field variable between two consecutive iterationsiglsenoughy < ¢, wheree is the value
given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solverl@add to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration afteamber of Picard iterations have been
performed. If a given convergence tolerance between twatites is met before the iteration count
is met, it will switch the iteration type instead. This agglionly to some few solvers (as the Navier-
Stokes) where different linearization strategies arelalvbs.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, ifrédative change of the norm of the field
variable meets a tolerance criterion:
0 <€,

wheree is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the livgar equation solver. Using a factor
below unity is sometimes required to achive convergencéefmonlinear system. Typical values
range between 0.3 and unity. If one must use smaller valuethéorelaxation factor some other
methods to boost up the convergence might be needed to immevconvergence. A factor above
unity might rarely speed up the convergence. Relaxed Jarialoefined as follows:

u; = \u; + (1 - /\)ui,l,
where is the factor given with this keyword. The default value foe relaxation factor is unity.

Many of the keywords used to control tNenlinear System  have a corresponding keyword for the
Steady State. Basically the operation is similar exceptéfierence value for the current solutiapis the
last converged value of the nonlinear system before stpatimew loosely coupled iteration cycle. Otherwise
the explanations given above are valid.

Steady State Convergence Measure String
Steady State Norm Degree Integer
Steady State Norm Dofs Integer
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Steady State Convergence Tolerance Real
Steady State Relaxation Factor Real
Additionally these keywords are located in tBenulation  section of the command file.

Steady State Max lterations Integer
The maximum number of coupled system iterations. For stetatg analysis this means it litelarly,
for transient analysis this is the maximum number of iteraiwithin each timestep.

Steady State Min Iterations Integer
Sometimes the coupling is such that nontrivial solutiores @tained only after some basic cycle
is repeated. Therefore the user may sometimes need to sahalsninimum number of iterations.
Sometimes the steady state loop is also used in a dirty wap sorhe systematic procedures — for
example computing the capacitance matrix, or lumped elagtings. Then this value may be set to
an a priori known constant value.
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Chapter 5

Integration of time-dependent systems

5.1 Introduction

Solving time-dependent systems is becoming more and maonencm in various branches of computational
science, as the computer resources grow steadily. EImexSwolay be adapted to solve such systems. The
first order time derivatives may be discretizated by usirgftiiowing methods:

e the Crank-Nicolson method
e the Backward Differences Formulae (BDF) of several orders

In the case of the first order BDF scheme adaptive time-stgpgirategy may also be used.
The second order time derivatives are approximated byraitiag the Bossak method or reformulating
the second order equations as equivalent systems of first eggiations.

5.2 Time discretization strategies
Consider the numerical solution of the evolutionary fieldatipn

o¢
= A
o TKo=1. (5.1)
where the differential operatd€ does not involve differentiation with respect to timeand f is a given

function of spatial coordinates and time. The spatial @iszation of 6.1) leads to the algebraic equations

Ma—q)JrchzF, (5.2)
ot
whereM, K andF result from the discretization of the identity operatog tperatoiC and f, respectively.
The vector® contains the values of the unknown fielcat nodes.
The applications of the first three BDF methods to discrégiiae time derivative term irb(2) yield the
following systems:

1 . . 1 _
— M+ K)ot = pitl 4~ M@? 5.3
(At * ) A ’ (®-3)
1 2 ‘ 2 . 1 4 . 1_.

— M+ K)ot =2t M= — ! 4
(At T3 ) 3 Y (3 3 ’ ®4)

1 6 ‘ 6 . 1 8. 9 . 2 .
— M+ —K|oH = —Ftl 4 M= — 4 o2 5.5
<At 1 ) 11 A <11 11 1 ’ (5.5)

whereAt is the time step and’ is the solution at time step Similarly, F* is the value ofF’ at time step.
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All the BDF methods are implicit in time and stable. The aegigs of the methods increase along with
the increasing order. The starting values for the BDF sclsasherdern > 1 are computed using the BDF
schemes of order, ..., n — 1 as starting procedures. It should be noted that the BDFetigations of order
n > 3 do not allow the use of variable time-step size. Adaptiveststepping strategy may also be used in
the case of the first order BDF scheme.

The adaptive time-stepping is accomplished by first soltiregsystem using a trial time step and then
using two time steps the lengths of which equal to the halhaf bf the trial time step and comparing the
results. If the difference between the results is found teuficiently small, the use of the trial time step is
accepted. Otherwise a new trial time step is defined by digidhe previous trial time step into two steps
of equal length and then the procedure is repeated. One nieedme’s own criterion for determining
whether the use of the current time step is accepted. Theltlefdéerion is that the norms of the solutions
to each system of field equations do not differ more than thergihreshold value.

The time discretization of the second order equation

9?® 0P
W‘FBE-FK(I):F (5.6)

using the Bossak method leads to the system

M

1

1— , . — . (1 — .
( Sl B+K>@”1:F”1+M< @ pip Yy a)AZ>+

B(AL)? BAEL B(AL)? BAt 23 (5.7)
Y o i B i .
p(e s (3 1) v (1o ) )
where

VL= Vi At ((1— ) A" +yAT)
i1 1 i1 gy L i R WY

ALt _75(At)2((1)+ (I)) ﬂAtV + <1 2ﬂ>A, (5.8)
ﬂzi(l—a)% 7:%—04.

In the following the matriced/ and B are referred to as the mass and damping matrix, respectively

5.3 Keywords related to time discretization

All the keywords related to the time discretization may besgiin Simulation section of the solver input file
(.sif file). A number of keywords may also be given in Solvestem, so that each system of field equations
may be discretizated using independently chosen timgsstgpmethod. If keywords are not given in the
Solver section, the values of the keywords are taken to b&ethiven in the Simulation section. It should
be noted that certain keywords such as those controllingtngber of time steps, time-step sizes etc. may
only be given in the Simulation section.

Timestepping Method String
This keyword is used to declare the time discretizatiortetyfor the first order equations. The value
of this keyword may be set to be eitH&DF” or "Crank-Nicolson” and may be given in either
Simulation section or Solver section of the solver input file

BDF Order Integer
This keyword is used to define the order of the BDF method angdtaie values 1,...,5. This keyword
may be given in either Simulation section or Solver sectibtme solver input file.

Time Derivative Order Integer
If a second order equation is discretizated, this keywordtnbe given the value 2 in the Solver
section of the solver input file. It should be noted that theose order time derivatives are always
discretizated using the Bossak method.
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Bossak Alpha Real [-0.05]
This keyword is used to define the value foin the Bossak method used in the time discretization of
second order equations. This keyword may be given in eitimul&tion section or Solver section of
the solver input file.

Timestep Intervals Integer array
This keyword is used to define the number of time steps. It negrbay-valued so that different
time-step lengths may be used for different time intervathe entire simulation. For example, if one
wishes to take first 50 time steps and then to use a diffemastsitep length for the following 100 time
steps, one may define

Timestep Intervals(2) = 50 100

and use th@imestep Sizes keyword to define time-step lengths for the two sets of tirepst

Timestep Sizes Real array
This keyword is used to define the length of time step. If tHaevaf theTimestep Intervals
keyword is array-valued, the value of this keyword must Aksan array of the same size. For example,
if one has defined

Timestep Intervals(2) = 50 100
the declaration
Timestep Sizes(2) = 0.1 1.0

sets the time-step length for the first 50 time steps to bertdXa@ the remaining 100 time steps 1.0.

Timestep Function Real
Instead of using th&imestep Sizes keyword the length of time step may be defined by using
this keyword. The value of this keyword is evaluated at thgitr@ng of each time step. A variable
time-step length may conveniently be defined using a MAT Cartren function.

Output Intervals Integer array
This keyword is used to define the time-step interval forimgithe results on disk. As in the case of
theTimestep Sizes keyword the size of the value of this keyword must be compatiith that
of the Timestep Intervals keyword. The value at a step is saved if for the corresponding
output intervab mod(m-1,0)==0 . An exception is output interval equal to zero for which autis
not saved at all. However, the last step of the simulatiotways saved.

Lumped Mass Matrix Logical [false]
The use of a lumped mass matrix may be activated by settingalhie of this keyword to b&rue in
the Solver section of solver input file. The default lumpisglefined by

Zi Zj M;;

M = M; ==~

(22

(5.9)

The keywords related to the adaptive time-stepping may belyiven in the Simulation section of the
solver input file. When the adaptive time-stepping straisgysed, a set of trial time steps is defined using
the keywords introduced above. The adaptive proceduresisudad for each of these trial steps. Note that
the adaptive time-stepping is possible only in the caseefitht order BDF scheme.

Adaptive Timestepping Logical [false]
The value of this keyword must be set toreie if the adaptive time integration is to be used.

Adaptive Time Error Real
This keyword is used to define the threshold value for theoih for determining whether the use of
the current time step is accepted.
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Adaptive Error Measure Real
Using this keyword one may define one’s own measure for etintpghe difference between the
computed results. This measure and the threshold valuehviggiven using th&daptive Time
Error keyword, may be used to define a user-defined criterion f@rdeghing whether the use of the
current time step is accepted. The value ofAldaptive Error Measure keyword is evaluated
twice for each trial time step. For the first time the valueha keyword is evaluated after the system
is solved using the trial time step. The second time is aftersiystem is solved using two time steps
the lengths of which equal to the half of that of the trial tistep. The absolute value of the relative
difference between these two values is compared to thehibicesalue given by the\daptive
Time Error keyword to determine whether the use of the current timeistaepcepted. If several
systems of field equations are solved, all the solutions saigsfy the similar criterion. If this keyword
is not used, the default criterion is based on comparing ¢hems of the solution fields.

Adaptive Min Timestep Real
Using this keyword one can limit the subsequent divisiomefttial time steps by giving the minimum
time-step length which is allowed.

Adaptive Keep Smallest Integer [1]
By default the adaptive scheme tries to double the lengthefitme step after the acceptable time
step is found. If a value > 1 is given for this keyword, the adaptive scheme tries to iaseghe step
length after taking n steps which are at most as long as tpdestgth accepted.

5.4 On the treatment of time derivatives in EImer Solver code

In the following a number of issues that may be useful if ongriing a code to solve one’s own application
are explained.

By default EImer Solver does not generate or use global madamping matrices in the solution of
time-dependent systems. Mass and damping matrices neecctiniputed only element-wise, as the linear
system resulting from the time discretization, such &8)( is first formed element-wise and this local
contribution is later assembled to the global system. Inctme of the first order equatioB.p) the local
linear system may be formed by using the subroutine call

CALL DefaultlstOrderTime( M, K, F ),

whereM is the element mass matrik is the element stiffness matrix ardis the element force vector. In
a similar manner, in the case of the second order equdiépdne may use the subroutine call

CALL Default2ndOrderTime( M, B, K, F ),

whereB is the element damping matrix.

Note that these subroutines must also be called for the toe#dices and vectors that result from the
discretization of neumann and newton boundary condititithe boundary conditions do not contain any
time derivatives, thé/ and B matrices should be set to be zero before calling the abovestibes.

If the global mass matrix is required, it may be generateddiygithe subroutine call

CALL DefaultUpdateMass( M )
Similarly, the global damping matrix may be generated bypgighe subroutine call
CALL DefaultUpdateDamp( B ).

Global mass (and possibly damping) matrices are requice@xample, in the solution of eigenvalue prob-
lems. One may also implement one’s own time-stepping scladitihe global level using these matrices.
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Chapter 6

Solving eigenvalue problems

6.1 Introduction

Eigenvalue problems form an important class of numericablgms, especially in the field of structural
analysis. Also some other application fields may have eiglemvproblems, such as those in density func-
tional theory. This manual, however, introduces eigerealomputation in Elmer using terminology from
elasticity.

Several different eigenvalue problems can be formulateelasticity. These include the “standard”
generalized eigenvalue problems, problems with geomstiffoess or with damping, as well as stability
(buckling) analysis. All of the aforementioned problema b& solved with Elmer. The eigenproblems can
be solved using direct, iterative or multigrid solution imads.

6.2 Theory

The steady-state equation for elastic deformation of satidy be written as
~V-r=71, (6.1)

wherer is the stress tensor. When considering eigen frequencysisathe force ternfis replaced by the
inertia term,
0%d

wherep is the density.
The displacement can now be assumed to oscillate harmiyniciéth the eigen frequency in a form
defined by the eigenvectdr Inserting this into the above equation yields

=

—V-7(d) = —w?pd, (6.3)

or in discretized form
Ku = —w?Mu, (6.4)

where K is the stiffness matrix)/ is the mass matrix, and is a vector containing the values dfat
discretization points. The equatiémdis called the generalized eigenproblem.

Including the effects of pre-stresses into the eigenprobgequite straightforward. Let us assume that
there is a given tension field in the solid. The tension is included by an extra term in tleady-state
equation

—V-7-V-(oVu) = f. (6.5)

The pre-stress term includes a componiptto the stiffness matrix of the problem and thus the eigervalu
equation including pre-stresses is
(K + Kg)u = —w*Mu. (6.6)
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The pre-stress in EImer may be a known pre-tension, due @redtloading or due to thermal stress,
for example. The stress tensor containing the pre-stresisefirst computed by a steady-state analysis and
after that the eigenvalue problem is solved. It should bechttough that the eigenvalue problem in a pre-
stressed state is solved using first order linearizatiom;hvimeans that the eigenvalues are solved about the
non-displaced state. If the pre-loading influences larderdeations the eigenvalues are not accurate.

The eigenvalue problem with pre-stresses may be used tp #tadtability of the system. Some initial
loading is defined and a pre-stress tenst computed. This tensor is then multiplied by a test scaldrhe
critical load for stability, or buckling, is found by settjrihe force on the right hand side of the equatob
equal to zero. The problem then is to sov&om

Ku=—-\Kgu, (6.7)

which again is formally an eigenvalue problem for the tesapweter. The critical loading is found by
multiplying the given test load with the value &f In other words, ifA > 1 the loading is unstable.

6.2.1 Damped eigenvalue problem

Finally, let us consider the damped eigenproblem, als@dajuadratic eigenvalue problem. In this case
there is a force component proportional to the first timewdgitie of the displacement in addition to the
inertia term I

_V'T:_(SE_F/)W’
whered is a damping coefficient. The problem is transformed into aersuitable form for numerical
solution by using a new variabié defined ag’ = ‘g—f. This yields

(6.8)

=1
—V-T:—&T/—l—p%—i. (6.9)

Working out the time derivatives and moving into the matax, the equation may be written as

Ku=—Dv+iwMv, (6.10)

(3 0)()-(h L)) e

where: is the imaginary unitD is the damping matrix, and a vector containing the values 6f at the
discretization points. Now the damped eigenproblem issfamed into a generalized eigenproblem for
complex eigenvalues.

Finally, to improve the numerical behavior of the dampecdejgoblem, a scaling constants intro-
duced into the definition?’ = s%. In the matrix equatio®.11this influences only the identity matrix
blocksI to be replaced byl. Good results for numerical calculations are found when

or,

s =||M||oo = max |M;;|. (6.12)

6.3 Keywords related to eigenvalue problems

An eigenvalue analysis in Elmer is set up just as the corradipg steady-state elasticity analysis. An
eigenvalue analysis is then defined by a few additional kegievn the Solver section of the sif file. The
solver in question can be linear elasticity solver calle@ &t Analysis, linear plate elasticity solver, or even
nonlinear elasticity solver, though the eigen analysisfisourse, linear.

Many of the standard equation solver keywords affect alsaetgen analysis.g. the values given for
Linear System Solver and Linear System lterative Methodasef an iterative solver. More information
about these settings is given in this Manual under the chapteerning linear system solvers. The specific
keywords for eigen analysis are listed below
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Eigen Analysis Logical
Instructs Elmer to use eigensystem solvers. Must be seu®ifirall eigenvalue problems.

Eigen System Values Integer
Determines the number of eigen values and eigen vectorsutechp

Eigen System Select String
This keyword allows the user to select, which eigenvaluecamputed. The allowable choices are

Smallest Magnitude
Largest Magnitude

Smallest Real Part

Largest Real Part
Smallest Imag Part
Largest Imag Part

Smallest magnitude is the default.

Eigen System Convergence Tolerance Real
The convergence tolerance for iterative eigensystem solMee default is 100 times Linear System
Convergence Tolerance.

Eigen System Max lIterations Integer
The number of iterations for iterative eigensystem solVae default is 300.

Eigen System Complex Logical
Should be given value True if the eigen system is complexthe system matrices are complex. Not
to be given in damped eigen value analysis.

Geometric Stiffness Logical
Defines geometric stiffness (pre-stress) to be taken irtowat in eigen analysis. This feature is only
available with linear bulk elasticity solver.

Stability Analysis Logical
Defines stability analysis. This feature is only availabithwinear bulk elasticity solver.

Eigen System Damped Logical
Defines a damped eigen analysis. Damped eigen analysidletdeanly when using iterative solver.

Eigen System Use Identity Logical

If True defines the relation displacement and its derivativee s’ = sg—f. The other possibility is to
useMwv = iwMu. The defaultis True.

6.4 Constructing matrices M and D in Solver code

In eigen analysis the mass matfix and the damping matri¥ have to be separately constructed. Usually
in EImer the different matrices are summed into a single imatructure, since the final linear equation is
of the form Ax = b, and there is no need for separate values of the mass matrtharstiffness matrix.

The matrix is represented in EImer using compressed rom@ofCRS) format, as explained in chapter
about Linear system solvers. The matrix structure holds\astors for the values of the mass and damping
matrices

TYPE Matrix_t
REAL(KIND=dp), POINTER :: MassValues(:), DampValues(:)

END TYPE Matrix_t
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These arrays use the saRews andCols tables than the norm&alues array.

The mass and damping matrices are constructed elemenitwasgmmilar manner as the stiffness matrix.
After each element the local contributions are updateddcetfuation matrices by the following subroutine
calls

CALL DefaultUpdateEquations( STIFF, FORCE )

IF ( Solver % NOFEigenValues > 0 ) THEN
CALL DefaultUpdateMass( MASS )
CALL DefaultUpdateDamp( DAMP )

END IF

In this segment of code the variabl83IFF , MASS DAMPand FORCEstore the local values of the
stiffness matrix, the mass matrix, the damping matrix, dedright hand side of the equation, respectively.
The integeNOFEigenValues if the Solver data structure gives the number of eigen values requested.
Here it is used as an indicator of whether the mass and dampatrices need to be constructed.

The eigenvalues and eigenvectors are stored in the éB@ysr % Variable % EigenValues
andSolver % Variable % EigenVectors ,

TYPE Variable t

COMPLEX(KIND=dp), POINTER :: EigenValues(:)
COMPLEX(KIND=dp), POINTER :: EigenVectors(:,:)

END TYPE Matrix_t

and the eigenvector corresponding to the eigenvialséound inSolver % Variable % EigenVectors(i,:)
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Chapter 7

Adaptive Solution

7.1 Introduction

A posteriori error analysis and adaptive mesh refinement@anadays standard tools in finite element anal-
ysis when cracks, boundary layers, corner singularitiescls waves, and other irregularities are present.
A posteriori error indicators can be used to reveal flaws iitefielement discretizations and well designed
adaptive mesh refinemenets can reduce the computationsldrastically.

7.2 Theory

Let us consider equilibrium equations of the form
—V-.qg=finQ, (7.2)
g-n=gonl, (7.2)

whereq is either a flux vector or a second order stress teriss,a computational domaif, is a boundary
part, f is an external source or body forgeis an external flux or traction andis the unit outward normal
to the boundary.

Most symmetric steady state problems described in the modelual of Elmer [] fit in the above
framework of equilibrium equations. To fix ideas, suppos# this the heat flux satisfying Fourier’s law
q = —kVT,whereT is the temperature ardis the heat conductivity of the material. We could also think
of ¢ as the stress tensor of linear elasticity. In this case Hedaw states thaty = £ : ¢, wheref is
the fourth order tensor of elastic coefficients= symm(Vu) is the linearized strain tensor ands the
displacement vector.

7.2.1 A posteriori estimate

Let us denote the finite element approximatior &y ¢, and measure the errgr— ¢, as

ERROR = / g — qnl? dQ (7.3)
Q

Our primary goal is to ensure the accuracy of the solutiomigyasing the condition
ERROR <TOLERANCE (7.4)

whereTOLERANCE > 0 is an error tolerance prescribed by the user.
In practise, the goal must be replaced by a stronger conditio

ESTIMATE <TOLERANCE (7.5)
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whereESTIM AT E is a computable functional (of all available data) satisfyi
ERROR < ESTIMATE (7.6)

Then, if (7.5) holds, {.4) is satisfied and the quality of the numerical solution isrgungeed.
In Elmer the a posteriori estimat@.p) is computed from local residuals of the finite element soiuas
a weighted sum over the elements,

ESTIMATE = | " n%, (7.7)
E

whereng is the local error indicator for an individual elemdrit

= aEh%/ IV qu+ a0
E

=+ 6E' Z he/‘[[qll'ne]]e|2 ar (78)
ein Q €

+ e Z he/‘%-ne—gfdl“
eon I’ €

Hereag, B, and~g, are local positive constants. The values of these corsstiaiend, among other
things, on the problem to be solved, and must be estimatedutigrcase by case [].

The first sum in 7.8) is taken over all edgesof E inside the computational domain, the second sum is
taken over all edges on the boundary darf{-]. is the jump in(-) acrosse, andn, is a unit normal to the
edge.hg is the size of the element aid is the size of the edge.

The first term on the right-hand-side af.8) measures the local residual of the finite element solution
with respect to the equilibrium equation.{). The second term measures the discontinuity in the nualeric
flux inside2 and the third term the residual with respect to the boundoagition (7.2).

7.2.2 Adaptivity

The secondary goal of our numerical computations is to finol@isn satisfying 7.4) as efficienciently as
possible. A nearly optimal solution strategy is obtainedibifizing the property (here we need to impose
some minor restrictions ofiandg, see [])

LOCAL ERROR > ng (7.9)

where
LOCAL ERROR = / lg — qn|? dQ (7.10)
E
The estimate suggests that the error in the numerical salstiould be reduced efficiently if the mesh is
refined locally where the indicatorg; are large. Naturally, we can think of coarsening the mestrevties
values of the indicators are small.

The adaptive mesh refinement strategy of ElImer is based dadhkestimate?.9) and on the following
additional assumptions and heuristic optimality condisio

e The local error behaves as
ng = Cphh? (7.11)

for some constant§'y andpg.

e In the optimal mesh the error is uniformly distributed oves elements:

e = TOLERANCE/NelementS (712)
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The constant§'r, andpg in (7.11) can be solved locally for each element if the local errocstéie local
mesh sizes are known from at least two different solutiortee §econd rule?(12 can then be applied to
extrapolate a new nearly optimal mesh density for the subs@agalculations.

The mesh refinements can be performed eiher by splittingxistirgg elements into smaller using the
so called RGB-refinement strategy described in [], or by meming a complete remeshing of the computa-
tional domain using the built-in unstructured mesh gemesahat produce high quality Delaunay triangula-
tions. In the latter alternative not only mesh refinemenbissible, but also local adaptive coarsening.

7.3 Keywords related to the adaptive solution

The adaptive solver of Elmer is activated and controlledhgyfollowing keywords in the Solver block of
the solver-input-file.

Adaptive Mesh Refinement Logical
If set to true, then after the solution of the linear systeentftogram computes residual error indicators
for all active elements, estimates the global error, compatnew mesh density and refines the mesh
accordingly.

Adaptive Remesh Logical
If set to true, then a complete remeshing is performed after @stimation using the Mesh2D or
Mesh3D generators. The new mesh density is written in filenesgh”. If set to false, then the RGB-
splitting strategy for triangles is applied to perform teémements.

Adaptive Save Mesh Logical
If set to true, the subsequent meshes are stored in diresRefinedMeshN , wherel is the number
of the adaptive iterate.

Adaptive Error Limit Real
Error tolerance for the adaptive solution.

Adaptive Min H Real
Imposes a restriction on the mesh size. Defualt is zero.

Adaptive Max H Real
Imposes a restriction on the mesh size. Default is infinite.

Adaptive Max Change Real
Controls the change in local mesh density between two sulese@daptive iterates. Using this key-
word the user can restrict the refinement/coarsening tdiggathe adaptive solution process.

7.4 Implementing own error estimators

Suppose that we are given a subroutine callsGolver for solving the Poisson equation, and we would

like to enhance the code by implementing an a posteriori émdhcator for adaptive mesh refinement. The

first thing to do is to take the modukdaptive in use, an define the local error indicators as functions in
an intefrace block. The beginning of the subroutine showid like the following:

SUBROUTINE MySolver( Model,Solver,Timestep, TransientS imulation )
USE DefUtils
USE Adaptive

INTERFACE
FUNCTION InsideResidual( Model, Element, Mesh, &
Quant, Perm, Fnorm ) RESULT( Indicator )
USE Types

CSC - IT Center for Science [@)sv-nD |



7. Adaptive Solution 40

TYPE(Element_t), POINTER :: Element
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator, Fnorm
INTEGER :: Perm()

END FUNCTION InsideResidual

FUNCTION EdgeResidual( Model, Edge, Mesh, &
Quant, Perm ) RESULT( Indicator )

USE Types
TYPE(Element_t), POINTER :: Edge
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator
INTEGER :: Perm()

END FUNCTION EdgeResidual

FUNCTION BoundaryResidual( Model, Edge, Mesh, &
Quant, Perm, Gnorm ) RESULT( Indicator )

USE Types
TYPE(Element_t), POINTER :: Edge
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator, Gnorm
INTEGER :: Perm()

END FUNCTION BoundaryResidual

END INTERFACE

After these fixed declarations we may proceed normally byndefithe local variables, allocate memory
for local tables, integrate the stiffness matrix, set bamaonditions, and solve the problem. Error esti-
mation and adaptive mesh refinements are then performedIimgdae subroutindRefineMesh , which
should appear in the code right after the functiiefaultSolve

Norm = DefaultSolve()

IF ( ListGetLogical( Solver % Values, 'Adaptive Mesh Refine ment' ) ) &
CALL RefineMesh( Model, Solver, Potential, Permutation, &
InsideResidual, EdgeResidual, BoundaryResidual )

The functiondnsideResidual , EdgeResidual andBoundaryResidual  defined in the inter-
face block should finally be containedilySolve , and return the values of the error indicators described
in the previous section.

As an example, suppose that we are using linear triangledrahtedra for solving the Poisson equation.
In this case it hold¥ - ¢, = 0 on each element, and the contribution of the firtst term in (7.1) is simply

InsideResidual = hp /|f|2 dQ (7.13)
\ /&

The function that computes the value of the inside redisoalccbe written as follows.

FUNCTION InsideResidual( Model, Element, Mesh, &
Quant, Perm, Fnorm ) RESULT( Indicator )
IMPLICIT NONE
TYPE(Model_t) :: Model
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INTEGER :: Perm(:)

REAL(KIND=dp) :: Quant(:), Indicator, Fnorm
TYPE( Mesh_t ), POINTER i Mesh
TYPE( Element_t ), POINTER :: Element

TYPE(GaussintegrationPoints_t), TARGET :: IP

TYPE(ValuelList_t), POINTER :: BodyForce

REAL(KIND=dp) :: f, hK, det], Basis(MAX_NODES), &
dBasisdx(MAX_NODES,3), ddBasisddx(MAX_NODES,3,3), &
Source(MAX_NODES)

LOGICAL :: stat

INTEGER :: n

Indicator = 0.0d0
Fnorm = 0.0d0
hK = element % hK

BodyForce => GetBodyForce( Element )
Source = GetReal( Element, 'Source’ )

IP = GaussPoints( Element )
DOn=1 IP % n
stat = Elementinfo( Element, Nodes, IP % u(n), IP % v(n), &
IP % w(n), det], Basis, dBasisdx, ddBasisddx, .FALSE. )
f = SUM( Source =* Basis )
Fnorm = Fnorm + f = 2 » detd % IP % s(n)
Indicator = Indicator + f »* 2 « det] * IP % s(n)
END DO

Fnorm = SQRT( Fnorm )
Indicator = hK * SQRT( Indicator )

END FUNCTION Inside Residual

For the boundary and edge residuals refer to the exaRugikson.f90  in the tutorial manual of Elmer.
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Chapter 8

Parallel runs

8.1 Introduction

In times of even simple desktop PCs containing multiple CBitUa least multiple cores, parallel computing
is a necessity to exploit the complete potential of thoshitgctures. As on multi-core architectures multi-
threading (e.g., OpenMP) would be a feasible concept, Eirtiézes the well established Message Passing
Interface standard for inter-process communication. @pjgroach makes it possible to run Elmer on both,
multi-core as well as multi processor environments.

8.1.1 Parallel Implementation in Elmer

The general concept of a parallel run within Elmer is disptain Fig.8.1 Elmer uses domain decomposi-

unpartitioned partitioned mesh
mesh

=

domain
decomposition

1

Partition

parallel combined result
solution

unification of
% result

Figure 8.1: The principle steps to be taken for a parallelafuglmer
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tion for distributing the load to multiple processes tha being run on either different cores or CPUs. To
that end, the initial mesh has to be split into parts that A waspect to the applied models — lead to similar
loads of the processdtsThis will be discussed in sectid12

The solver stage mostly will demand from serial runs diffgmumerical techniques, as solution strate-
gies have to take care of the by the domain boundaries linpiesgibilities of memory access. In general,
convergence of linear systems are more difficult to achievepared to serial runs. These issues will be
addressed in sectidh3.1

Finally, as also the output of the parallel runs is split idtanains, the post-processing usually demands
an additional step of unifying the split results. Alternaty, new visualization software is capable to do that
either on the fly or to also visualize the results using mldtjprocesses. Especially the latter method in-
evitably will gain importance with the increasing size ofaets that cannot be handled on a single CPU/core
due to memory and computational constraints. Conceptssifrocessing parallel results are discussed in
section8.4

8.2 Preprocessing of Parallel Runs

In order to utilize the decomposition, the mesh has to beispdi the same amount of partition¥), as there
are different processes within the parallel computatidre plain and easy way is to start from a mesh for a
serial run. The typical structure of a single domain meshlatde is the following:

meshdirectoryname|
|-mesh.header
|-mesh.nodes
|-mesh.elements
|-mesh.boundary

The mesh consists of a header file, containing the basicnivgtion (e.g., numbers of nodes and elements),
a file containing all nodes and two further files defining thikband boundary-elements.

The parallel mesh consisting of 2 partitions the is writtender the same directory within the sub-
directorypatrtitioning.2

meshdirectoryname|

|-mesh.header

[-mesh.nodes

[-mesh.elments

|-mesh.boundary

|-partitioning.2|
|-part.1.header
|-part.1.nodes
|-part.1.elements
|-part.1.boundary
|-part.1.shared
|-part.2.header
|-part.2.nodes
|-part.2.elements
|-part.2.boundary
|-part.2.shared

These files basically reflect the structure of a single domash on the partition level. Additionally, a
file namespart. N.shared (with N being the partition number) is introduced. It contains —hesrtame
suggests — information on between domains shared nodes.

Icurrently Elmer is not able to perform internal load balagci
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8.2.1 Partitioning with EImerGrid

Provided, a single domain mesh exists, the correspondimgiErid command to create a with respect to
the x-direction split mesh (in our cagex 1 x 1 = 2 partitions) would read as

ElmerGrid 2 2 meshdirectoryname -partition 2 1 1 0

There are different methods of partitioning built into Eh@eid. they are summarized in tatBel

option purpose parameters
-partition N, N, N, F partitionwith respecttodi- N,,,,. ...number of par-
rections titions in x/y/z-direction,

F=0...element-wise par-
titioning, 1 ...node-wise

partitioning
-partorder Ng Ny Ny (optional in additional to n,/,,,. ...components of
previous) direction of or- normal vector of ordering
dering
-metis N M uses metis library for parti- N ...number of partitions,
tioning M...method
M=0... PartMeshNodal
M=1... PartMeshDual
M=2 ... PartGraphRecursive
M=3... PartGraphKway
M=4 ... PartGraphVKway

Table 8.1: Partition methods for ElmerGrid

Depending on what partitioning method was used, additipaehmeters may be used for adaption of

mesh specifications Those parameters and their purposstackin8.2
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option purpose parameters
-halo create halo for the parti-
tioning
-indirect create indirect connections

in the partitioning
-periodic F, F, F., declare the periodic coor- F,, . = 1 ...periodic, O

dinate directions for paral- ... not periodic
lel meshes and sets peri-
odic points into same par-
titions

-partoptim apply aggressive optimiza-
tion to node sharing

-partbw minimize the bandwidth

of partition-partition cou-
plings

-parthypre hypre type numbering
(number the nodes contin-
uously partition-wise)

Table 8.2: Additional mesh generation options for EImedGri

Figure8.2shows the different distribution of partitions obtainedwtiwo different methods. In general,

Figure 8.2: Distribution of four partitions using the optg-partition 2 2 1 (left) and-metis 4
1 (right). It comes clear that the partitioning to the left tiins more partition-partition boundaries and
consequently will perform worse in a parallel run

the user should utilize theetis options, if more complex geometries (like in Fig.2) are to be decom-
posed. This ensures that the number of shared nodes andjoenslg also the amount of inter-process
communication during the parallel computation is minindiz&ore simple objects, especially those using
regular meshes, can be split according to the axis usingdhéion option without having to compro-
mise on communication speed.
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Halo Elements

One of the additional options displayed in Tadh2 are so called halo elements. As displayed in RBd3,
halo-elements are additional elements that do not belotigetgartition (i.e., they are not contributing in
the domain-wise solution procedure), but rather are raplaf the neighbor elements of adjoining partitions.
Thus, in a parallel run, the values of variables as well ag&wnetry of the whole element are at disposition
withing the domain partition. These may be needed by a spdsffi method, such as the Discontinuous

4

Figure 8.3: The concept of halo-elements. Each partitiortains information on the neighbor elements
along the domain boundary (red) of the adjoining partititnss leading to a redundant stripe of elements
(light-gray) that is shared between the domains

Galerkin method or by specific solvers/functions that neggtiteonal geometric information from the other
domain (e.g., element-averaged surface normals).

8.3 Parallel Computations in Elmer

As mentioned before, Elmer utilizes Message Passing htter{MPI) for inter-process communication
while doing a parallel computation. To that end, a speciaalfel executable that is linked to a MPI li-
brary (the minimum requirement). The compilation processtifie MPI version is shortly explained in
chapterll of this guide. The executable file of the parallel version & has a to the serial call different
name,ElmerSolver_mpi . Typically it is executed as an argument to an additiondltbalt is specific
to the parallel (MPI) environment of the platform. For insta, in a typical MPI installation (OpenMPI,
MPICH) the command

mpirun -np 4 ElmerSolver_mpi

will run a four-process parallel EImer run. The typical smreoutput upon launchinglmerSolver_mpi
indicating the number of processes is

ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ParCommlnit: Initialize #PEs: 4
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MAIN:
MAIN: =
MAIN. ELMER SOLVER STARTING
MAIN: Library version: 5.5.0 (Rev: 4195)

MAIN: Running in parallel using 4 tasks.

MAIN: HYPRE library linked in.

MAIN:  MUMPS library linked in.

MAIN: =
MAIN:
MAIN:

Itis — unlike in the serial version of EImer — not possiblexplitly add the Solver Input File (SIF, suffix
* .sif ) asanargumentto the calling command. The user rather Ipas\ale a file calle€ELMERSOLVER_STARTINFO
containing the file name. Additionally, the in the SIF deethmesh-directory has to contain a mesh with —
in this specific case — four partitions.

8.3.1 Numerical Strategies in Parallel

The concept of domain decomposition means that EImerSi@ven onN > 1 separate parts of a domain
that are interlinked at the boundaries. If no special sal\{see later in this section) are utilized, this in-
herently means that iterative methods have to be used i twydechieve convergence for the linear(ized)
system solution procedure. The selection of availablatitez methods, which all fall within Krylov sub-
space methods, is to be found in sectikih These methods in general have similar convergence cothpare
to a single process run. The biggest difference introdugetbimain decomposition is, that preconditioning
strategies are altered. To give an example: As only appligti¢ local matrix, the LU factorization of a
parallel run in comparison to a serial drops the gray zondisated in Fig.8.4. This not necessarily will,

Domain 1
) !
Y B
Domain 2
4 A
Y f
Domain 3

Figure 8.4: Difference of ILU factorization between sedald domain decomposition runs. If the factoriza-
tion is applied only locally within the domain, contributiv from the light-gray zones are not accounted for
in the latter

but can negatively affect the convergence of the iteratigéiod.

CSC - IT Center for Science [@)sv-nD |



8. Parallel runs 48

Hypre

Hypre is a library for solving large, sparse linear systemeqguations on massively parallel computers.
Hypre was developed at the Center for Applied Scientific Catimg (CASC) at Lawrence Livermore Na-
tional Laboratory. Hypre is distributed under the GNU LesSeneral Public License and thus not included
in the Elmer distribution. It rather has to be downloadednpibed and linked together with the Elmer
sources.

The principle keyword for utilizing Hypre is given in the sel section

Linear System Use Hypre Logical
if settoTrue , Hypre will be used to solve the linear system.

In Elmer, the only Krylov sub-space method being impleméig¢he Conjugate Gradient Stabilized (BiCGStab)
method, which is taken into use by

Linear System Solver = "lterative"
Linear System lIterative Method = "BiCGStab"

In combination with the BIiCGStab method, the following pyeditioner can be taken into use If ILUn
method for preconditioning, the following settings havétoset in the solver section (here with ILU fill-in
level 1):

Linear System Preconditioning String "ILU  N"
with N being the fill-in level (just in the built-in EImer preconiiber). The only significant difference
to Elmer’s built-in ILU preconditioner is, that in case of phg, the missing parts (illustrated in Fig.
8.4) are now being passed from one domain to the other. In othedsythe precodnitioner should
behave exactly as if it would be applied in a serial, singlmdm run. This can improve convergence,
but comes at the cost of increased inter-processor comiationc

Linear System Preconditioning String "ParaSails"
Parasalils is a sparse approximate inverse preconditinisgrieconditioner for sparse matrix systems.
It has the following additional parameters

ParaSails Threshold is aReal value that determines the typical value for matrix entries
being dropped. Its suggested range for direct input (p@sgtign) is from 0.0 to 0.1, with lower
values demanding higher accuracy and consequently congpiirtie/memory. Alternatively, if
negative values are entered, they are interpreted as ttimfraf nonzero elements that are being
dropped (e.g., -0.9 leads to 90/

ParaSails Filter is aReal value that determines the typical value for matrix entries
in the in the computed approximate inverse that are droppesdsuggested range for direct
input (positive sign) is from 0.0 to 0.05. Alternatively,rigative values are entered, they are
interpreted as the fraction of nonzero elements that arglakiopped (see earlier item).

ParaSails Maxlevel is aninteger value that determines the accuracy of the precondi-
tioner. Usually a value of 0 or 1 is within the applicable flam

ParaSails Symmetry is aninteger value that determines the nature of the original ma-
trix. the following settings are to be found from the Hypremaal:

0 non-symmetric and/or indefinite problem, non-symmetrécpnditioner

1 Semi Positive Definite (SPD) problem, SPD (factored) pnélittmner

2 non-symmetric definite problem, SPD (factored) precaowkr

A typical section for the Navier-Stokes solver being solwéth BiCGStab and ParaSails could look
as follows

Solver 1
Equation = "Navier-Stokes"
Optimize Bandwidth = Logical True
Linear System Solver = "lterative"
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Linear System lterative Method = "BiCGStab"
Linear System Max lterations = 500
Linear System Convergence Tolerance = 1.0E-06
Linear System Abort Not Converged = True
Linear System Preconditioning = "ILU1"
Linear System Residual Output = 1
Linear System Use Hypre = Logical True
Linear System Preconditioning = "ParaSails"
ParaSails Threshold = Real -0.95
ParaSails Filter = Real -0.95
ParaSails Maxlevel = Integer 1
ParaSails Symmetry = Integer 0
Stabilization Method = Stabilized
Nonlinear System Convergence Tolerance = 1.0E-04
Nonlinear System Max lterations = 30
Nonlinear System Newton After Iterations = 1
Nonlinear System Newton After Tolerance = 1.0E-04
Steady State Convergence Tolerance = 1.0E-03

End

Linear System Preconditioning String "BoomerAMG"
The multi-level procedure given by BoomerAMG can also bézdtil as a preconditioner. See the
following part for the particular parameters that can bespd4o BoomerAMG

Additionally, the Algebraic MultiGrid (AMG) solver, BoontAMG, can be used directly to solve the system
by

Linear System Solver = "lterative"
Linear System lIterative Method = "BoomerAMG"

The following parameters for BoomerAMG can be set

BoomerAMG Relax Type Integer

Defines the smoother on the fine grid and the up and the dowa.dyoksible choices
Jacobi
Gauss-Seidel, sequential
Gauss-Seidel, interior points in parallel, boundary setjake
hybrid Gauss-Seidel or SOR, forward solve (default value)
hybrid Gauss-Seidel or SOR, backward solve
hybrid chaotic Gauss-Seidel (does not work with MPI!)
hybrid symmetric Gauss-Seidel or SSOR
Gaussian elimination (only on coarsest level)
The solver on the coarsest level is set to Gaussian elirimati

©Couh~wWNEO

BoomerAMG Coarsen Type Integer
Sets the parallel coarsening algorithm to be used. Pogsilliens are
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10

11

CLJP-coarsening (a parallel coarsening algorithm usimigpendent
sets (default)

classical Ruge-Stiiben coarsening on each processor, nudégu
treatme

classical Ruge-Stiiben coarsening on each processowéallby a third
pass, which adds coarse points on the boundaries

Falgout coarsening (uses 1 first, followed by CLJP using tierior
coarse points generated by 1 as its first independent set)
CLJP-coarsening (using a fixed random vector, for debuggimgoses
only)

PMIS-coarsening (a parallel coarsening algorithm usirdgpendent
sets, generating lower complexities than CLJP, might &lad to slower
convergence)

PMIS-coarsening (using a fixed random vector, for debugpurgoses
only)

HMIS-coarsening (uses one pass Ruge-Stiiben on each pooess-
pendently, followed by PMIS using the interior C-points geated as
its first independent set)

one-pass Ruge-Stiiben coarsening on each processor, rieoptreat-
ment

BoomerAMG Num Sweeps Integer
sets the number of sweeps on the finest level (default vallje =

Boomeramg Max Levels Integer
sets maximum number of MG levels (default valugs)

BoomerAMG Interpolation Type Integer
Sets parallel interpolation operator. Possible optioers ar

P
PRBoo~our~wNnRO

12
13

classical modified interpolation (default)

LS interpolation (for use with GSMG)

classical modified interpolation for hyperbolic PDEs

direct interpolation (with separation of weights)

multipass interpolation

multipass interpolation (with separation of weights)

extended classical modified interpolation

extended (if no common C neighbor) classical modified irtkion
standard interpolation

standard interpolation (with separation of weights)

classical block interpolation (for use with nodal systerassion only)
classical block interpolation (for use with nodal systerassion only)
with diagonalized diagonal blocks

FF interpolation

FF1 interpolation

BoomerAMG Smooth Type Integer
For the use of more complex smoothers. possible options are
6 Schwarz smoothers (default and recommended)

7 Pilut
8 ParaSails
9 Euclid

BoomerAMG Cycle Type Integer
For a V-cycle (default) give the valuefor a W-cycle2
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BoomerAMG Num Functions Integer
has to be equal to the value giverMariable DOFs

Usually, the default values deliver a good performance &andlsl hence be used as a reference constellation.
Mind also, that BoomerAMG would have more (partly obsoletp)ion that have not directly been made
accessible through its EImer interface.

MUMPS

The only implementation of a direct solver in the parallebkien of EiImer is MUMPSI{ttp://mumps.enseeiht.fr/
a sparse matrix multi-frontal parallel direct solver. MUBIs not licensed under the GNU license terms
and hence is not able to be distributed together with the Edmearces or binaries, but has to be downloaded
by the user. How MUMPS is integrated into Elmer is explainedhapterl 1.

There are certain limits what comes to memory consumpt®frthe time being the analysis phase is
done on a master process. As a rule of thumb, about 100k Etsmistributed on a quad core machine with
2 Gb of memory per process still works, but does not work fast.

MUMPS is invoked by choosinginear System Solver = Direct in combination with_inear
System Direct Method = Mumps . A typical call of the Navier-Stokes solver reads like:

Solver 1
Equation = "Navier-Stokes"
Optimize Bandwidth = Logical True
Linear System Solver = Direct
Linear System Direct Method = Mumps
Linear System Convergence Tolerance = 1.0E-06
Steady State Convergence Tolerance = 1.0E-03
Stabilization Method = Stabilized
Nonlinear System Convergence Tolerance = 1.0E-03
Nonlinear System Max lterations = 1
Nonlinear System Newton After Iterations = 1
Nonlinear System Newton After Tolerance = 1.0E-03
End

Mind, that MUMPS will not work in serial runs. There thiMFPacklibrary should be applied in order
to utilize the same method.

8.4 Post-processing of Parallel Runs

During a parallel run of Elmer the results are also writterparallel. That means, a run with' > 1
partitions/processes producds > 1 output files. If the base name of the output filgparallelrun ,
given in the SIF as

Post File = "parallelrun.ep”
the results of @V = 4 parallel run will be written into the mesh-directory as

parallelrun.ep.0
parallelrun.ep.1
parallelrun.ep.2
parallelrun.ep.3

These files contain the results of each domain (starting rét) for EImerPost. Similar, if the result file
base name is given as

Post File = "parallelrun.result"

the results of av = 4 parallel run will be written into the mesh-directory as

CSC - IT Center for Science [@)sv-nD |


http://mumps.enseeiht.fr/

8. Parallel runs 52

parallelrun.result.0
parallelrun.result.1
parallelrun.result.2
parallelrun.result.3

From these files, a new Elmer run (on the same partitioned heashbe restarted.

8.4.1 Combination of Results with EImerGrid

The traditional way of post-processing Elmer results is imwthem using ElmerPost. It is possible to
directly load one of the domain ElmerPost output files intmé&lPost, viewing only the part of the mesh
corresponding to the part of the domain decompoistion. llisuibe user wants to combine those splitted
results into a single. With the results as displayed abdwecorrect EImerGrid command to achieve that
results is

ElmerGrid 15 3 parallelrun

This will go through all timesteps (transient) or steadytesiavels (steady state) of all partitions and add
them to the fileparallelrun.ep (default output name can be changed usingthe option). If lesser
timesteps/steady-state levels have been needed for gemeer of the run, EImerGrid still would try to add
the maximium given number, thus filling in zeros into the cameld file. This can be avoided by giving the
additional option-saveinterval first last intervall. Forinstance, if the user knows that
the run has converged at steady-state level number 8, anstimjerested to combine the converged result
the command

ElmerGrid 15 3 parallelrun -saveinterval 8 8 1

executed in the mesh-directory would deliver the resulnéiGrid asumes that all partitions in the directory
have to be unified into the single output file. If for instanceua of 4 partitions has been run with the

same output name after a run with 6 partitions, the fizsllelrun.ep.4 andparallelrun.ep.5

would still reside in the mesh directory, but should not bdeatl This can be achieved by the additional
option-partjoin 4 . This is also usefull if only some parts of the full result gltbbe included.

8.4.2 User Defined Functions and Subroutines in Parallel

In principle, the user does not have to distinguish betwaeseadefined function/solver in parallel and serial
runs. Communication between processes is being taken tatthi the built-in EImer routines, such that
the single solver does not really "see" anything from thalberenvironment it is running on. In special
cases a few lines of code might be necessary to deal withrelifées imposed by parallel runs. Those are
explained in sectiod2.4.3of chapter??.
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Chapter 9

Matrix manipulation utilities

9.1 Dirichlet conditions

In finite element method there are two kinds of boundary dosms. The natural boundary condition that
may be set by only affecting the r.h.s. of the equation ane#isential boundary conditions where also the
matrix needs to be tampered. The latter ones are also caltezhlBt boundary conditions. The natural
boundary conditions are often more problem specific so teeiaglirected to the Models Manual for more
details on them.

Technically the Dirichlet conditions in ElImerSolver aré ggough manipulating only the values in the
matrix rather than its structure. To be more specific, inrsgtihe degree of freedom with indéxhe i:th
row of the matrix is set zero, except for the diagonal whickesto be unity. When also the r.h.s. of the
equation is set to the desired value, the solution will §atfee Dirichlet condition. The Dirichlet conditions
may be set to existing boundary elements. Additionallydiiet conditions may be set for set of nodes that
are created on-the-fly.

Usually the Dirichlet conditions are given at objects whive a lower dimension than the leading
dimension in the geometry, i.e. for 3D problems values atmllisfixed only at 2D faces. However, it is
possible also to set the conditions for the bodies also. ifilaig be particularly useful when the condition is
only conditional.

There is a handicap with this procedure which is that the sgmnof the original matrix will be lost.
This may affect the performance of linear system solverserngure to symmetricity of the matrix equation
there are two remedies. Also the column may be zeroed anchiherkvalues may be subtracted from the
r.h.s. The second option is to eliminate all the rows androokirelated to the known values. This reduces
the size of the matrix but of has an additional cost as a seogmdatrix is created and the values are copied
into it.

Sometimes the Dirichlet conditions should depend on othgakles in a way which defined whether or
not to set the conditions at all. For example, the tempegattia boundary should be defined only if the flow
is inside the boundary. For outflow the definition of the terapere is not physically justified. For this kind
of purposes the user may give a condition that is a variabtseiff. If this variable is positive the Dirichlet
condition is applied,

9.2 Periodic conditions
Periodic BCs may be considered to be a special case of Datichhditions where the fixed value is given as

linear combination of other unknown values. The periodiarmary conditions in Elmer are very flexible.
In fact they may even be antiperiodic.

53



9. Matrix manipulation utilities 54

9.3 Setting and computing nodal loads

Similarly to the Dirichlet values one may also set nodal b€l entries for the r.h.s. of the matrix equation.
Generally there are good reasons to avoid the use of noddd las they are mesh dependent. There are,
however, some uses also for setting nodal loads. For exampiaultiphysical couplings sometimes it may
be a good solution to transfer the forces directly in nodahfas this is the most accurate way to compute
the forces resulting from the discrete system.

It is possible to evaluate the nodal loads after the solu@omputed. This however, requires that the
original matrix Ay that has not been eliminated for Dirichlet conditions iseshvThen the the nodal forces
may be computed from

f=Apx —b. (9.2

It should be noted that the nodal value is mesh dependenthéairequation it will be in Watts and for
electrostatic equation in Coulombs, for example.

9.4 Energy norm
When the initial matrix is known an energy norm may be comgute

E =zT Apz. (9.2)

9.5 Active and passive elements

In Elmer it is possible to define certain areas of the modetsatrgetry passive during the solution. This
feature allows also deactivating and reactivating of tleeneints. An element being passive means that its
contribution is not included into the global matrix equatidOne could, for example, model two separate
bodies heated with different heating power, and connect thvégh a third structure only after suitable time
has elapsed. This all could be modeled within a single sitiwla

The geometry of the whole system is meshed as usual, and $s@a&lements are only omitted from
the equations. The passive definition is done solverwiseedemientwise. The former means that, eg.,
the temperature may be passive and the displacements attive same element. The passive property of
elements is defined with a real valued parameter with the ramstructed from the name of the variable
followed byPassive intheBody Force section. When the parameter obtains a value greater than zer
the element is passive.

9.6 Keywords for Matrix manipulation

Solver solver id

Linear System Symmetric Logical True
Make the matrix symmetric by eliminating the known valuesirthe r.h.s and zeroing the matrix
entries.

Before Linsolve "EliminateDirichlet" "EliminateDirichlet"
Creates a secondary matrix with a reduced size by elimigd&irichlet conditions and passing
this to the linear system solver.

Calculate Loads Logical True
This keyword activates the computation of nodal loads. HEseilting values will be saved to
variable which is derived from the primary variable by adpihe suffixLoads to it.

Calculate Energy Norm Logical True
Activates the computation of the energy norm. The result lvélsaved to th&imulation
block with namees: VarName Energy Norm which may further be saved ISaveScalars
The energy norm may only be computed when also the loads arputed.
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Exported Variable i Varname Loads
One may reserve the space for the load variable also exghjitiy using this keyword. This may
be needed if there is a dependency between variables thaeiked before the load variable is

created.
Boundary Condition bc id
Target Boundaries(n) Integer

The set of boundaries for which the Dirichlet conditions wé applied on.

Target Nodes(n) Integer
Sets point conditions on-the-fly. These points refer to theotute indexing of the nodes.

Target Coordinates(n,DIM) Real
Ccoordinate values which are transformed into nodal inslereresponding to the nearest nodes
at the time of first call. Target groups defined bgrget Boundaries , Target Nodes |,
andTarget Coordinates should not reside in the same boundary condition definition.

Varname Real
Each variable which has an equation that is solved for, magebdy giving its value at the
boundary conditions section. If the variables are notdistethe keyword listing the user shoul
also define the type which Real .

Varname i  Real
For multicomponent fields the Dirichlet condition may betsetach field separately.

Varname Condition Real
The Dirichlet condition related to the variable is set aztnly if the condition is positive.

Varname Load Real
Sets the goven value to the r.h.s. of the matrix equationeefi® the solution of the variable.
Note that this value is a nodal quantity. The nodal loads arengexactly as the Dirichlet
conditions except that a stringpad is attached to the name of the variable.

The following keywords in the boundary condition sectioa ased to control the periodic boundary
conditions.

Periodic BC Integer
This refers to the counterpart of the periodic boundary @¢@rd This means that periodic
boundaries come in pairs, and for the other boundary you eyl to give pointer to.

Anti Periodic BC Integer
The system may be also antiperiodic i.e. the absolute valtreisame but the sign is different.
Periodic BC Translate(3) Real

The periodic boundary is mapped to the other boundary by ttifeerent operations: translation,
rotatition and scaling. This generality is not usually negtdnd therefore default value is used.
For the translation vector the default is the vector thatiaimed when moving in the normal
direction of the first boundary until the target boundaryits I this is not desired the user may
give another translation vector using this keyword.

Periodic BC Rotate(3) Real
By default no rotation is performed prior to the mapping oiues. This keyword may be used
to give the angles of rotation.

Periodic BC Scale(3) Real

By default there is no scaling performed prior to the mapmihgalues. This keyword may be
used to give a scaling vector if this is desired.

Periodic BC Variable Logical True
The user should define the variables that are to be periodiatiwe. This is done by attaching
their names into logical expressions following the stitegiodic BC

Body Force body force id
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Varname Real
The setting of Dirichlet conditions for the whole body falls the same logic as for the bound-
aries. When the body force is assigned to a body the valuébeviixed as defined.

Varname Load Real
Sets the goven value to the r.h.s. of the matrix equatiortie@lep the solution of the variable.
Note that this value is a nodal quantity. The nodal loads arengexactly as the Dirichlet
conditions except that a stringpad is attached to the name of the variable.

Varname Passive Real
If this variable obtains a positive value the element is sssjye and assembled for. Note that it
is not possible to control components of vector valued Wéemseparately.
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Miscallenous options

10.1 Solver activation

There is a large number of different ways how solvers neectadbivated and deactivated. Mostly there
needs are related to different kinds of multiphysical cougpkchemes. In the solver section one may give
the following keywords.

Exec Solver String
The options areever, always, before timestep, after timestep, bofore all ,
after all, before saving, after saving . If nothing else is specified the solver is
called every time in its order of appearance. The savingints refers to the one defined Gytput
Intervals and used to save the results.

Exec Interval Integer
This keyword gives an interval at which the solver is acti&eother intervals the solver is not used.

10.2 Options for variable names

Sometimes one wants to give rename the components of thagyrirariable. This may be done in defining
the component names in the brackets, for example.

Variable = Flow[Velo:2 Pres:1]

Decleares that variablow consists ofVelo with two components anflres with one component. If the
number of components is 2 or 3 the variable will be treatedastor in the ElImerPost files.
If one does not require output for a given variable one mayededt with the-nooutput  option e.g.

Variable = -nooutput Dummy

If one wants to decleare the number of dofs of the variablei@agalso use thelofs option to define
the number of components in a variable e.g.

Variable = -dofs 3 Flow

These different options should not be fully mixed.
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Chapter 11

Compilation and Linking

11.1 Compiling the whole package

For complete up-to-date compilation instructions lookatEImer web pages http:www.csc.fielmer
Elmer distribution comes in several different modules. lEsicthese may be compiled using the config-
ure script followed by a make command. Below is a possibleplation strategy in the Unix system.

#!/bin/sh -f

# replace these with your compilers:
export CC=gcc

export CXX=g++

export FC=g95

export F77=g95

modules="matc umfpack mathlibs elmergrid meshgen2d eio hu titer fem"
for m in $modules; do

cd $m ; ./configure --prefix=/opt/elmer && make && make inst all && cd ..
done

11.1.1 MPI version

In order to compile a parallel version of EImer, one has thide the MPI library. Usually, itis enough to add
the switcheswith-mpi=yes and -with-mpi-dir= /path/to/mpi-installatiorto the configure com-
mand. More specifically, paths directly pointing to the ud#-file directory and the directory containing the
MPI libraries themselves can be set using the switelwéh-mpi-inc-dir and-with-mpi-lib-dir

As most MPI implementations contain wrapper scripts for C;Gmpicc , mpic++ ) as well as Fortran
(mpif90 , mpif77 ) compilers, the compiler environment variables can be setraingly. A compilation
script for the MPI version thus could look like this

#l/bin/sh -f

export CC=mpicc

export CXX=mpic++

export FC=mpif90

export F77=mpif77

# change that to your MPI installation path
export MPIDIR="/opt/openmpi"

modules="matc umfpack mathlibs elmergrid meshgen2d eio hu titer fem"

for m in $modules; do
cd $m ; ./configure --with-mpi=yes --with-mpi-dir="$MPID IR" \
--with-mpi-lib-dir="$MPIDIR/lib"  --with-mpi-inc-dir= "$MPIDIR/include" \
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--prefix=/opt/elmer && make && make install && cd ..
done

11.2 Compiling a user defined subroutine

The elmerf90 command is provided to help compiling your own solvers, iaisvrapper script to the
compiler that was used to compile the elmer that is inRA& H

elmerf90 -o MySolver MySolver.f90
In the MinGW system in Windows the suffidll  should preferably be used
elmerf90 -o MySolver.dll MySolver.f90

After successful compilation, the filemysolver.dll is to be found in the local directory. In the
filename declaration of therocedure -keyword in solver input file, the suffidll  can be omitted

Solver 1
Procedure = "mysolver

subroutineName"

End
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Chapter 12

Basic Programming

12.1 Introduction

The Elmer distribution contains a large set of differenvead and also the possibility to declare dependence
of material properties or boundary conditions on certaiaddes (e.g., using the MATC language). Never-
theless, there always may occur certain physical probleatsare too difficult to be handled via the solver
input file. Such problems can be coped by introducing new fusestions or even complete new solvers.
Elmer is very flexible if certain models have to be added byutber providing her/his own code.

This chapter shall provide a brief introduction to basicggeanming of user functions as well as solvers
that can be added to Elmer. This will be done by mainly usintaageexamples and explaining the program-
ming steps occurring in these.

The Elmer Solver source is written in the programming lamguBortran 90. Since the Elmer Solver
binaries are compiled as shared objects, it is sufficientgbrjewly compile the code contributed by the user
as an executable of a shared objesb( in UNIX and.dll  in Windows) that dynamically is linked to the
rest of the distribution. In order to provide Elmer with theeded information to be able to load an external
function or solver, the following entry in the solver inpdef{suffix.sif ) has to be given:

Procedure "filename" "procedure”

Where the fildilename is the above mentioned executable that should contain thieaRd®0 subroutine
or functionprocedure . The filefilename should reside in the same directory where the solver input
file is. Else, the relative or absolute path to that file shdn@ddded in front of the entfifename

12.2 Basic Elmer Functions and Structures

In order to provide a better understanding for the followinginly example-based explanation some of the
most often needed functions and routines provided by Elimadt ke discussed in this section. Most of these
routines and functions are defined in the Fortran 90 moDel®Jtils . It has to be included in the code
provided by the user giving the keyword

USE DefUtils

It is important to notice that — due to the nature of the Fitement Method — the basic data structure
in the Elmer Solver is the single element, rather than sipgiats. That simplifies data manipulation in
solver subroutines, but makes things a little bit more diffiif dealing with the coding of pointwise defined
boundary and initial condition as well as body forces ancpueater functions. In the Elmer Solver the type
Element_t contains information on elements.
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12.2.1 How to Read Values from the Input File

In the Elmer Solver the entries of each section of the solvgut file — such as material, body force and
initial condition — are accessed via pointer of the defined dgpeValueList_t , further referred to as
“list”. A list provides access to all the information thathlaeen passed to the Elmer Solver from the solver
input files, related to the specific section.

The principal connection between the solver input file ardatcess from a user function is depicted in
Fig. 12.1

Fortran 90 code (*.f90):

solver input file (*.sif): ]

Header ¢ :
Mesh DB " “mymesh" ,( SUBROUTINE MySolver( Mer,dt,TranS|ent)
End «
! IMPLICIT NONE
Simulation !
Coordinate System = "Cartesian 2D" 1 .
Coordinate Main (3) =12 3 , TYPE(Solver_t) :: Solver
Simulation Type = Steady State | Type(Model_t) :: Model

Output Intervals(1) = 1 |
I REAL(KIND=dp) :: dt
I LOGICAL : Transient
Post File = "myresult.ep” I

Output File = "myresult.dat"
End

Steady State Max Iterations = 1

llocal variables
TYPE(ValueList_t), POINTER :: listsol

Body 1 CHARACTER(LEN=MAX_NAME_LEN) :: varname
Equation = 1 LOGICAL :: Gotlt

Body Force =1

End

Iget list on Solver Secti

on
(Jistsol => GetSolverParams()

me = GetString(listsol,'Variable’,Gotlt)
F (.NOT.Gotlt) THEN
CALL FATAL('MySolver','Variable not found’)
END IF

Body Force 1
Source = Real 1
End

Equation 1
Active Solvers (1) = 1
End

Solver 1

Equation = "MyEquation"
Variable = "MyVar"

Variable DOFs = 1
Procedure = "File" "MySolver"

Linear System Solver = "Direct"
Steady State Convergence Tolerance = 1E-06
END

END SUBROUTINE MySolver

. Boundary Condition 1
Target Boundaries (4) =123 4

MyVar=0
End N
‘ ~
s s
Solver 1 RS
Equation = "Poisson” S~
(ariable = "Myvar" D IR T T
Variable DOFs = 1 '""”"‘-----..____A_:Qariablez"MyVar" )

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct”
Steady State Convergence Tolerance = 1e-06
End

. /

Figure 12.1: Scheme of the access of structures in the siolpeat file from a Fortran 90 user subroutine.
The example shows, how a string is read in from3iodver section.

How to Access Different Sections

The following table shows the definition of the functions defi in the modul®efUtils  to provide the
correct list for parameters and constants concerning thelation and solvers

function corresponding section
GetSimulation() Simulation
GetConstants() Constants
GetSolverParams()  Solver 1,...

For instance, the following source code lines provide axteshe entries in the simulation section of the
solver input file
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I variable declaration for pointer on list
TYPE(ValueList_t), POINTER :: Simulation

I assign pointer to list
Simulation => GetSimulation()

Lists that provide information connected to a certain eletnage

function corresponding section
GetMaterial( Element, Found ) Material 1,...
GetBodyForce( Element, Found ) Bodyforce 1,...
GetEquation( Element, Found ) Equation 1,...

GetBC( UElement ) Boundary Condition 1,...

In the first three of these functions shown above the optigaahbleFound of type LOGICAL is set to
.TRUE. upon successful search in the solver input file. Hence, ibeansed for error handling. The argu-
mentsElement andUElement are of typeElement_t . If writing a solver, the current element is known
and hence can directly be passed to the functions listedeabiélse, this argument may also be omitted.
However, EImer Solver needs to have the information uporlki@ent in order to inquire the number of the
material/bodyforce/equation/boundary condition secfiom the solver input file. Hence, if this function
argument is dropped, Elmer Solver falls back to the strediurrentModel % CurrentElement ,
which by the active solver has to be assigned to the addraks cfirrent element (see sectib.4).

The functions for input of different values from the solveput file need the assigned pointer to the
corresponding to the specific section.

Reading Constants from the Solver Input File
The following value types are defined for the solver input file

Value in Input File  Variable in Elmer Solver

Real Real(KIND=dp)

Integer INTEGER

Logical LOGICAL

String CHARACTER(LEN=MAX_NAME_LEN)
File CHARACTER(LEN=+)

The defined interface of such a function is

FUNCTION Funct i onNane( List, Name, Found ) Result(x)
TYPE(ValueList_t), POINTER :: List
CHARACTER(LEN=) :: Name
LOGICAL, OPTIONAL :: Found

The arguments have the following purpose

List List from which the value has to be read. This pointer has tolidained by one
of the previously introduced functions

Name The keyword in the particular section for the value

Found Optional boolean variable that contains the valllRUE. upon successful read
in

The type of the returned of valug, is depending on the function. The following functions aeeldred in
theDefUtils  module:

e Avalue of typeREALis read in using the function
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REAL(KIND=dp) :: r

r = GetConstReal( List, Name, Found )

e Avariable of typelNTEGERIs read in using the function
INTEGER :: i
im: Getlnteger( List, Name, Found )
e A string is read into a user function or solver by the follog/itode line
CHARACTER(LEN=MAX_NAME_LEN) :: str
str = GetString( List, Name, Found )

It is important to note that these routines are only meantdading in constant values. Consequently, these
values must not be dependent on other variables.

Reading Mesh-values from the Solver Input File

The previously introduced functioBetConstReal is defined for reading in a constant value of type
REAL(KIND=dp) . In the case if values have to be obtained for nodes of an eledefined on the mesh
(e.g., an initial condition, a boundary condition or a matlgparameter), the following function has to be
used

FUNCTION GetReal( List, Name, Found, UElement ) RESULT(x)
TYPE(ValueList_t), POINTER :: List
CHARACTER(LEN=) :: Name
LOGICAL, OPTIONAL :: Found
TYPE(Element_t), OPTIONAL, TARGET :: UElement
REAL(KIND=dp) :: x(CurrentModel % CurrentElement % Type % N umberOfNodes)

The returned valuex, is a one-dimensional array of tyREAL(KIND=dp) with entries for every node of
the either given elemehiElement or alternatively the default structu@irrentModel % CurrentElement
For instance, reading in the material paramétescosity  from an already assigned pointer of type
ValueList_t for a given elementzlement , is done by the following code lines

REAL(KIND=dp), ALLOCATABLE :: viscosity(:)
INTEGER :: NoNodes

TYPE(ValuelList_t), POINTER :: Material
TYPE(Element_t), POINTER :: Element
LOGICAL :: Found

al | ocat e viscosity , set pointers Material and Element
NoNodes = GetElementNOFNodes(Element)

viscosity(1:NoNodes) = GetReal(Material, 'Viscosity’, F ound, Element)

The user has to make sure that the array that later contansoithal values is of sufficient size. This, for
instance, can be guaranteed by allocating it to the maxig@lmming number of nodes for an element in the
model

ALLOCATE(viscosity(CurrentModel % MaxElementNodes))
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Physical Time as Argument of User Function

If a user function needs physical time as an input, it can segxhas an argument. For instance, if a boundary
condition for the normal component of the velocity would édke physical time as the input variable, the
function call in the solver input file then would look as falls (see sectioi2.3for more details on user
functions)

Boundary Condition BCNo
Name = "time_dependent_outlet"
Target Boundaries = Boundar yNo
Normal-Tangential Velocity = True
Velocity 2 = 0.0
Velocity 1
Variable Time
Real Procedure " executabl e" "timeOutletCondition"
End
End

Here the entrieBCNo andBoundar yNo have to be replaced by the correct boundary condition anddbou
ary target number. The fiexecut abl e should contain the compiled user functiimeOutletCondition

12.2.2 How to Communicate with Structures Inside Elmer Soler

Often it is necessary to get information from inside the Eli@elver, such as mesh coordinates or field
variables associated to another solver procedure. Ifiwgrii solver subroutine, all information of that kind
is accessible via the typEYPE(Solver_t) :: Solver . In the case of a user function (boundary
condition, initial condition, material parameter), thdaiét structureCurrentModel % Solver has to
be used.

Inquiring Information on the Element

As mentioned earlier, most of the pre-defined functions armtautines inside Elmer Solver apply on the
whole element rather than on single nodes. Information emehts can be accessed via the pre-defined
typeElement_t . We list the functions/subroutines for the mostly needegbpses:

e Setting the active element (bulk):

TYPE(Element_t), POINTER :: Element
Type(Solver_t), Target :: Solver
INTEGER :: ElementNumber

Element => GetActiveElement(ElementNumber)

The argumenSolver is optional. If it is not givenCurrentModel % Solver is used. This
function also automatically sets the poin@&rrrentModel % CurrentElement to the element
with the given element numb&lementNumber . This is important if sub-sequentially called func-
tions rely on this default value to be set.

The total number of active bulk elements for a specific salvar be inquired using the valiBolver
% NumberOfActiveElements

e Setting the active element (boundary):

TYPE(Element_t), POINTER :: BoundaryElement
INTEGER :: ElementNumber

BoundaryElement => GetBoundaryElement(ElementNumber)
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This routine also sets the structutairrentModel % CurrentElement to the boundary ele-
ment.

In contrary to the domain (i.e., bulk) it is a priory not knowshich boundary element is part of a
boundary condition of a specific solver. This informationynba obtained using the function

Type(Element ) :: BoundaryElement
LOGICAL :: IsActiveBoundary

IsActiveBoundary = BoundaryElement(BoundaryElement,So Iver)

where both arguments are optional. If they are omitted, EBadver takes the valu€durrentModel

% CurrentElement andCurrentModel % Solver ,respectively. The boundary element num-
ber,ElementNumber may vary between 1 and the maximum value

Solver % Mesh % NumberOfBoundaryElements

e Inquire number of nodes in an element:

INTEGER :: N
TYPE(Element_t) :: Element

N = GetElementNOFNodes( Element )

The argumenElement is optional. The default value BurrentModel % CurrentElement

e Get nodal coordinates for element:
TYPE(Nodes_t) :: ElementNodes
TYPE(Element_t) :: Element
TYPE(Solver_t) :: Solver
CALL GetElementNodes( ElementNodes, Element, Solver )
The argument&lement andSolver are optional. The default values a@airrentModel %
CurrentElement  andCurrentModel % Solver | respectively. The argumeBtementNodes

is of the pre-defined typBlodes_t . The different components of the coordinates for the i-teno
can be accessed by

REAL(KIND=dp) :: Xcoord, Ycoord, Zcoord

Xcoord

= ElementNodes % x(i)
Ycoord = ElementNodes % y(i)
Zcoord = ElementNodes % z(i)

They correspond to the axes of the defined coordinate systéme isolver input file.

e Get local coordinates of the-th node for assigned element:

REAL(KIND=dp) :: U, V, W
TYPE(Element_t), POINTER :: Element
INTEGER :: i

U Element % Type % NodeU(i)
V = Element % Type % NodeV(i)
W = Element % Type % NodeW(i)
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Local coordinates are corresponding to the position infigeprototype element that is used inside
the Elmer Solver. They are important if parameter valueg ti@be obtained by summation over the
basis functions.

e Get normal vector at thie-th node of the assigned boundary element:

REAL(KIND=dp) :: U, V, Normal(3)
TYPE(Element_t), POINTER :: BoundaryElement
LOGICAL :: CheckDirection

U = BoundaryElement % Type % NodeU(i)
V = BoundaryElement % Type % NodeV(i)
Normal = NormalVector( BoundaryElement, Nodes, U, V, Check Direction )

The function needs the boundary element as well as the locatimates of the point, where the sur-
face (edge) normal shall be evaluated. The optional lastnaegt,CheckDirection , is a boolean
variable. If set to TRUE. , the direction of the normal is set correctly to the rulesegiin section
12.3.2 The surface normal is returned in model coordinates anflugsity length.

Inquiring Nodal Values of Field Variables
Nodal values for an element of a scalar variables are realeosubroutine

SUBROUTINE GetScalarLocalSolution( x,name,UElement,US olver )
REAL(KIND=dp) :: x(})
CHARACTER(LEN=), OPTIONAL :: name
TYPE(Solver_t) , OPTIONAL, TARGET :: USolver
TYPE(Element_t), OPTIONAL, TARGET : UElement

The returned value is an array containing the nodal valuéiseofariablename. If this variable name is not
provided, it is assumed that the corresponding sdli®olver has only one variable with a single degree
of freedom. If the optional parametddSolver andUElement are not provided, then the default values
CurrentModel % Solver andCurrentModel % CurrentElement , respectively, are used.

For instance, the following code lines read in the nodal elewalues for the variabléemperature
(from the heat solver)

REAL(KIND=dp), ALLOCATABLE :: localTemp(:)
ALLOCATE(localTemp(CurrentModel % MaxElementNodes))
CALL GetScalarLocalSolution(localTemp, 'Temperature’)

In the case of a vector field variable, the analog function
GetVectorLocalSolution has to be used. For instance, if the user wants to read in taévelocity
of an deforming mesh (from the MeshSolver), the followingtsy has to be applied

REAL(KIND=dp) , ALLOCATABLE :: localMeshVelocity(:,:)
ALLOCATE(localMeshVelocity(3,Solver % Mesh % MaxElement Nodes)

CALL GetVectorLocalSolution( MeshVelocity, 'Mesh Veloci ty")

Inquiring Values of Field Variables for the Whole Mesh

Sometimes, the user also would like to have values for a fiatdbile of the complete domain accessible.
This is done by assigning a pointer to the variable usinguhetfonVariableGet

VariablePointer => VariableGet(Solver % Mesh % Variables, "Variable')

The argumenvar i abl e hasto be replaced by the variable name. The returned p@miypeVariable t
This type contains the following components
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component purpose
INTEGER, POINTER :: Perm() Contains permutations for the variable. Since

Elmer Solver tries to optimize the matrix struc-
ture, the numbering of the nodal values of the
variable usually does not coincide with the num-
bering of the mesh-nodes. The is used to identify
the mesh-node for a variable-entry. Hence, the
field VariablePointer % Perm(i) con-
tains the nodal number of theth value of the

field variableVar i abl e.

INTEGER :: DOFs Contains the amount of vector components of the
variable.DOFsis 1 in case of a scalar, 2 or 3in
case of a two- or three-dimensional vector field.

REAL(KIND=dp), POINTER :: contains the values of the field variable

Values(:)

For instance, in order to get access to the temperature §iiddr as in the example above), the following

code lines may be used

TYPE(Variable_t), POINTER :: TempVar

INTEGER, POINTER :: TempPerm(:)

REAL(KIND=dp), POINTER :: Temperature(:)

INTEGER :: ElmentNo, N

REAL(KIND=dp), ALLOCATABLE :: localTemp(:)
ALLOCATE(localTemp(CurrentModel % MaxElementNodes))
TYPE(Element_t), POINTER :: Element

TempVar => VariableGet( Solver % Mesh % Variables, 'Tempera
IF ( ASSOCIATED( TempVar) ) THEN

TempPerm => TempVar % Perm

Temperature => TempVar % Values
NI stop if temperature field has not been found !!!!
ELSE IF

CALL FatalMyOwnSolver’, 'No variable Temperature found
END IF

DO ElementNo = 1,Solver % NumberOfActiveElements

Element => GetActiveElement(ElementNo)

N = GetElementNOFNodes()

Nodelndexes => Element % Nodelndexes

localTemp(1:N) = Temperature(TempPerm(Element % Nodelnd
END DO

ture’ )

exes))

It is recommended to check whether the pointer to the varibk been assigned correctly. In our little
example the call of the routineatal would stop the simulation run if the assessment would leaal to

negative result.

Inquiring the Current Time

In certain situations in transient simulations the phyldioae might be needed in a user function. In Elmer
Solver the physical time is treated as a variable and herstohze read in using the typ&riable_t

TYPE(Variable_t), POINTER :: TimeVar
Real(KIND=dp) :: Time

TimeVar => VariableGet( Solver % Mesh % Variables, 'Time’ )
Time = TimeVar % Values(1)
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How to Post Messages

IncludingPRINT or WRITEstatements to stdio in numeric-codes can lead excessipatoldarge number
of iterations and/or large model sizes) and consequentyraguction in performance. It is recommended
to use stdio-output routines provided by Elmer Solver, fbick to a certain extend the amount of output
can be controlled via the solver input file. The three prerdefisubroutines for output of messages are:

e Info is used for displaying messages (e.g., upon convergendheatreen. The syntax is
CALL Info('FunctionName’, The displayed message’, level =l evel nunber)

The first string shall indicate which function the displayedssage comes from. The second entry is
a string that contains the message itself. The integer Vadwe| nunber indicates the importance
of the message, starting from 1 (most important). The mawxintevel of messages being displayed
can be determined in the simulation section of the solvautifife

max output level = 3

e Warnis used for displaying warnings. Warnings are always dissdand should be used if conditions
in the code occur that might lead to possible errors

CALL Warn(’FunctionName’,’The displayed warning’)

e Fatal isused to terminate the simulation displaying a messages&iently, itis used in conditions
in the code where a continuation of the computation is imiptess

CALL Fatal(’FunctionName’, The displayed error message’ )

Of course the strings do not have to be hard-coded but canrbpased during run-time, using théRITE
command. The string variabMessage is provided for that purpose

WRITE(Message, formatstring) list, of, variables
CALL Info(’FunctionName’,Message, level=3)

The format-string has to be set according to the list of \deis

12.3 Writing a User Function

User functions can be used to provide a pointwise (not elémise!) value for a certain property. They are
used for setting values of material properties inside thealo and/or to set values for certain variables on
boundary conditions at the domain boundary.

The defined interface for a user function looks as follows

FUNCTION myfunction( model, n, var ) RESULT(result)
USE DefUtils
IMPLICIT None
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: var, result

contents of the function
| eading to a value for variable result ..

END FUNCTION myfunction
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The function returns the valuesult . If this is supposed to be a nodal value of a material propmrty
variable condition, the variable type in Elmer has to be dealble precision, hencREAL(KIND=dp) .

The first argument passed to the functiompdel , is of the declared typ&odel_t . It is basically the
interface to all information accessible at runtime, suckasable values, mesh coordinates and boundary
conditions.

The second argumennt, is the integer number of the node for which the function.; tlee valugesult -

is is evaluated. Through the last argumenatr, , a value of an input variable on which the result depends is
passed to the function. In the solver input file this variabledicated using th¥ariable -keyword. For
instance (see examples later in this chapter), if the usatsaa provide the function above with the result
being the density which — in this particular case — depende®temperature, the syntax looks as follows

Density = Variable Temperature
Procedure “filename" "myfunction”

Mind that there always has to la@ input variable to be given using this keyword. In the casg¢ there is
no need for an input, this may occur as a dummy argument iruthetion.

12.3.1 User Functions for Domain Properties

In the following we will give an outline of the main issues cenning the preparation of a user function for
a domain property. This might be of use if a material param(@em material section of the solver input
file), an initial condition (from solver input file initial aadition section) or a body force (from solver input
file body force section) of somewhat higher complexity halsdalefined for the domain.

Some basic aspects concerning the syntax of such functiatiso® explained by the following exam-
ples:

Example: Viscosity as a Function of Temperature
This example demonstrates the following topics:
e definition of a material property dependent on one inpuialde

e how to read in a value from the material section of the solwpuit file

We want to implement the following relation for the dynamisoosity, ., of a fluid

293
IM(T) = 293K €XP l:c . (T — 1>:| (121)
whereT is the temperature. The parametgesss (i.e., the reference viscosity at 293 Kelvin) afichave to
be read into our function from the material section of thevspinput file. Thus, the material section looks
as follows:

I Material section (ethanol)
|

Material 1

Viscosity = Variable Temperature
Procedure "fluidproperties" "getViscosity"

Reference Viscosity = Real 1.2E-03
Parameter C = Real 5.72

End
The valuesuqgsk = 1.2 - 1073 andC' = 5.72 are the numerical values of the parameter occurring in
(12.1) for pure ethanol. The executable containing the functiamedgetViscosity will be called

fluidproperties . The header — including the variable declaration — of thecfion then reads as
follows:
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!

I material property function for ELMER:

I dynamic fluid viscosity as a function of temperature
|

FUNCTION getViscosity( model, n, temp ) RESULT(visc)
! modules needed
USE DefUtils

IMPLICIT None

! variables in function header
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: temp, visc

! variables needed inside function
REAL(KIND=dp) :: refVisc, C

Logical :: Gotlt

TYPE(ValueList_t), POINTER :: material

In order to get the pointer to the correct material-list, v8e the functiorGetMaterial

! get pointer on list for material
material => GetMaterial()
IF ((NOT. ASSOCIATED(material)) THEN
CALL Fatal('getViscosity’, 'No material found’)
END IF

We immediately check, whether the pointer assignment wesessful. In the case of the NULL-pointer
being returned, the pre-defined procedBegal will stop the simulation and stdio will display the the
messagefgetViscosity): No material-id found

The next step is to read in the numerical values for the paienme

! read in reference viscosity

refvisc = GetConstReal( material, 'Reference Viscosity’, Gotlt)
IF(.NOT. Gotlt) THEN

CALL Fatal('getViscosity’, 'Reference Viscosity not foun d)
END IF

! read in parameter C
C = GetConstReal( material, 'Parameter C’, Gotlt)
IF(.NOT. Gotlt) THEN

CALL Fatal('getViscosity’, 'Parameter C not found’)
END IF

The variableGotlt contains the state of success of the input. In the case otuassful read-in (i.e., the
variableGotlt shows the value=ALSE. ), the simulation will be stopped by the routiRatal

Finally, after a check upon the absolute temperature beirget than zero, the viscosity is computed ac-
cording to equationl2.1)

I compute viscosity

IF (temp <= 0.0D00) THEN ! check for physical reasonable temp erature
CALL Warn('getViscosity’, 'Negative absolute temperatur e.)
CALL Warn('getViscosity’, 'Using viscosity reference val ue’)
visc = refVisc(1)

ELSE
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visc = refVisc * EXP(C *(2.93D02/temp - 1.0D00))
END IF

END FUNCTION getViscosity

In the case of negative absolute temperature, the referahaee will be returned. The pre-defined routine
Warn will display a specific warning on stdio.

Example: Body Force as a Function of Space

For the use as body force for the solver presentelRid (i.e. heat source distribution for heat conduction
equation), we want to write a function that provides a scalahe domain as a function of space. This
example demonstrates the following topics:

o definition of a scalar in the domain as function of space indimensions
e how to inquire the dimension of the problem
We want to implement the following two-dimensional spatieitribution for the scalak:
h(z,y) = —cos(2mx) -sin(27y), x,y € [0,1] (12.2)

wherex corresponds t€oordinate 1  andy to Coordinate 2  of the solver input file.

Since the function given inl@.2 is dependent on two input variables, the single argumenistable to
be passed to the function is not sufficient. Hence it will justused as dummy argument. Consequently, the
user can provide any (existing!) variable as argument irsteer input file. The header reads as follows

!
I body force function for ELMER:

! scalar load as function of coordinates x and y
! -CoS(2 *pi *X) *sin(2 *pi xy)
|

FUNCTION getLoad( model, n, dummyArgument ) RESULT(load)
I modules needed
USE DefUtils

IMPLICIT None

I variables in function header
TYPE(Model_t) :: model

INTEGER :: n

REAL(KIND=dp) :: dummyArgument, load

! variables needed inside function
INTEGER :: DIM
REAL(KIND=dp) :: X, y
Logical :: FirstVisited = .TRUE.
! remember these variables
SAVE DIM, FirstVisited

Further we want to check whether the problem is two-dimerai@and hence suitable for our function.
This is done only the first time the function is called, sinchopefully - the dimension of the prob-
lem does not change during all the following calls. The fiorctreturning the problem dimension is
CoordinateSystemDimension()

! things done only the first time the function is visited
IF (FirstVisited) THEN
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I check whether we are dealing with a 2d model
DIM = CoordinateSystemDimension()
IF (DIM /= 2) THEN
CALL FATAL('getLoad’, 'Dimension of model has to be 2d’)
END IF
FirstVisited = .FALSE.
END IF

The next step to inquire the coordinates of the current pii@tfunction is evaluated for. The structure
model contains that information

I get the local coordinates of the point
x = model % Nodes % x(n)
y = model % Nodes % y(n)

Finally, the result is computed

I compute load
load = -COS(2.0D00 +*Pl*x) * SIN(2.0DO0 =PI =*y)

END FUNCTION getLoad

Figurel2.2shows the result of a simulation using the solver defineddti@e12.4together with the function
getLoad as body force. The entry in the body force section of the sohfut file reads as follows:

~20.74 -13.34 -5.927 1.48 8.808

Figure 12.2: Result obtained with the routigetLoad as body force input for the heat conduction solver
presented iri2.4 Thez-coordinate is set proportional to the result obtained éutly plane.

Body Force 1
Heat Source
Variable Temp ljust a dummy argument
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Real Procedure "load
End

getLoad"

where the shared object file has been given the naagk . All boundaries are set to adiabatic boundary
condition, i.e..VT -7i = 0. This is possible if — and only if — the integral over the lo@ttor over the whole
domain balances to zero, like in our case. Since no Dirithtadition is set, the result is not unique and
contains an undetermined off$gf.

12.3.2 User Functions for Boundary Conditions

As for the user functions for bulk properties presented atise 12.3.1 the function for a boundary property
is evaluated pointwise. Hence, the identical functionrfiatee is used. The major difference between bulk
elements and elements on boundaries are, that the lattdrecassociated to more than one body. That is
the case on boundaries between bodies. This is importanicin cases where the boundary condition is
dependent on properties inside a specific body to which thedary is attached. Possible configurations of
boundaries are depicted in Fig2.3

a) outside boundary b) body-body boundary (interface)
—— -——
. J—
bul bulk

outside \ othefbo
/\ Ve
corner point

Figure 12.3: Possible constellations for boundaries aadhtirmal vectors; at element nodes. Mind, that
for a body-body interface (case b) the default orientatibthe surface normal may vary from element to
element. At boundary points that have a discontinuous fesative of the surface (i.e. at corners and
edges), the evaluation of the normal at the same point fortljacent boundary elements leads to different
surface normals. Parent elements of boundary elementsd@pecific body are marked as filled.

If the keyword for checking the directions in the functidormalVector  (see sectiori2.2.3 is set to
.TRUE. , the following rules apply:

e In the case of an outside boundary the surface norifyd, always pointing outwards of the body.

e By default on a body-body boundary, the orientation is shelthe normal always is pointing towards
the body with lower densityy, which is evaluated by comparison of the values given fokeyavord
Density in the corresponding material sections of the adjacentdsodi

In certain cases, if densities on both sides are either equairying functions of other variables, this may
lead to a varying orientation of the surface. This effect #mel effect of different directions of surface
normal for the same point at surface corners and edges istddpn Fig.12.3 Whereas the latter effect can
only be dealt with by either producing smooth surfaces orawjiag surface normals, the first problem can
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be overcome by providing the keywolNbrmal Target Body in the solver input file. This keyword
defines the direction of the surface normals for the pre-ddfsubroutindNormalVector . For instance,
the following sequence fixes the surface normal at boundamglition number 1 to point into body number
2

Boundary Condition 1
Target Boundaries

=1
Normal Target Body =

Integer 2

End

Example: Idealized Radiation Law for External Heat Transfer

As an illustrative example we want to show how to implementiyvdealized radiation boundary condition
for heat transfer. This example explains:

e how to identify the type of boundary according to FIg.3

e how to get material parameters from domain parent elemémii@doundary element
e how to identify the local node number in an elment

e how to inquire boundary normals

The net flux into the body at such a boundary shall be apprdeidiay
Gn = €qext — €0+ (T* = Tiy) (12.3a)

whereT,, is the external temperature,stands for the Stefan-Boltzmann constant atglthe emissivity.
The external heat flux shall be defined as

—1s-n, §-m<0,
Jext =

12.3b
0, else ( )

where [ is the intensity and’ the direction of the incoming radiation vector. The surfacemal, 77, is
assumed to point outwards the body surface.

Since we are planning to use this boundary condition in cotime with the solver presented in section
12.4.2 we have to provide the load vectoe= ¢,,/(c, 0) occurring in the force vector ofl@. 7). This means
that we have to inquire the material parametgrandp for the parent element from the material section of
the adjacent body.

The header of the function reads as

I boundary condition function for ELMER:
I simplified radiation BC
]
FUNCTION simpleRadiation( model, n, temp ) RESULT(load)
I modules needed
USE DefUtils

IMPLICIT None

! variables in function header
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: temp, load

! variables needed inside function
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REAL(KIND=dp), ALLOCATABLE :: Density(:), HeatCapacity( :), ExtTemp(:)
REAL(KIND=dp), POINTER :: Work(:,:)
REAL(KIND=dp) :: radvec(3), Normal(3), NormDir, U, V,&

Emissivity, normalabsorbtion, emission, StefanBoltzman n
INTEGER :: DIM, other_body id, nboundary, nparent,&

BoundaryElementNode, ParentElementNode, istat
Logical :: Gotlt, FirstTime=.TRUE., Absorption = .TRUE.
TYPE(ValueList_t), POINTER :: ParentMaterial, BC
TYPE(Element_t), POINTER :: BoundaryElement, ParentElem ent
TYPE(Nodes_t) :: ElementNodes

SAVE FirstTime, Density, HeatCapacity, ExtTemp
Do mmcmmmmmeeeeee

The boundary element and the pointer to the list of the cpmeding Boundary Condition-entry in the solver
input file are assigned

I get element information
!

BoundaryElement => CurrentModel % CurrentElement
IF ( .NOT. ASSOCIATED(BoundaryElement) ) THEN

CALL FATAL('simpleRadiation’,’No boundary element found )
END IF

BC => GetBC()
IF ( .NOT. ASSOCIATED(BC) ) THEN

CALL FATAL('simpleRadiation’,’No boundary condition fou nd’)
END IF

Thereafter, a case distinction between the two possiblstethations in Fig12.3(i.e.,outside or body-body
boundary). A outside boundary is indicated by the value -BamindaryElement % Boundaryinfo

% outbody . In the case of a boundary-boundary interface the surfaomailds supposed to point out-
wards. l.e., the body hosting the parent element is takeartedor whichParentElement % Bodyld
does not coincide witBoundaryElement % Boundarylnfo % outbody

other_body _id = BoundaryElement % Boundaryinfo % outbody
! only one body in simulation
I
IF (other_body_id < 1) THEN
ParentElement => BoundaryElement % Boundarylnfo % Right
IF ( .NOT. ASSOCIATED(ParentElement) )&
ParentElement => BoundaryElement % Boundarylnfo % Left
I we are dealing with a body-body boundary
I and assume that the normal is pointing outwards
I
ELSE
ParentElement => BoundaryElement % Boundaryinfo % Right
IF (ParentElement % Bodyld == other_body_id)&
ParentElement => BoundaryElement % Boundarylnfo % Left

END IF

! just to be on the save side, check again

!

IF ( .NOT. ASSOCIATED(ParentElement) ) THEN
WRITE(Message, *)&
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'No parent element found for boundary element no. ’, n
CALL FATAL('simpleRadiation’,Message)
END IF

After that procedure the point®arentElement is set on the adjacent element of the boundary element
inside the body for which the radiation boundary conditi®evaluated.

We further need the total number of nodes in the boundaryesiémnd the parent element given by
nboundary andnparent ,respectively. Also the corresponding number of the bonndade numbenm,
inthe parent elemer®ParentElementNode , as well as in the boundary elementits8fundaryElementNode
is evaluated. At the end of this code sequence, the ro@e@iElementNodes sets the information on the
nodes of the boundary element

I get the corresponding node in the elements
I
nboundary = GetElementNOFNodes(BoundaryElement)
DO BoundaryElementNode=1,nboundary

IF ( n == BoundaryElement % Nodelndexes(BoundaryElementNo de) ) EXIT
END DO
nparent = GetElementNOFNodes(ParentElement)
DO ParentElementNode=1,nboundary

IF ( n == ParentElement % Nodelndexes(ParentElementNode) ) EXIT
END DO

I get element nodes
S —

CALL GetElementNodes(ElementNodes, BoundaryElement)

The needed space for reading material parameter fro thentpalement as well as boundary condition
parameters for the boundary element is allocated. In the abthe function being re-visited, we first do a
deallocation, since the values wboundary or nparent may change from element to element (hybrid
mesh)

IF (.NOT.FirstTime) THEN

DEALLOCATE(Density, HeatCapacity, ExtTemp)
ELSE

FirstTime = .FALSE.
END IF
ALLOCATE(Density( nparent ), HeatCapacity( nparent ),&

ExtTemp(nboundary), stat=istat)

IF (istat /= 0) CALL FATAL('simpleRadiation’, 'Allocation s failed)

The following code lines read the values for the parametsse@ated with the boundary element and the
Stefan-Boltzmann constant from the solver input file

I get parameters from constants section

! and boundary condition section
!

DIM = CoordinateSystemDimension()
StefanBoltzmann = ListGetConstReal( Model % Constants, &
'Stefan Boltzmann’,Gotlt)
IF (.NOT. Gotlt) THEN ! default value in Sl units
StefanBoltzmann = 5.6704D-08
END IF
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Emissivity = GetConstReal( BC,’Emissivity’,Gotlt)

IF ((NOT. Gotlt) .OR. &

((Emissivity < 0.0d0) .OR. (Emissivity > 1.0d0))) THEN
load = 0.0d00
CALL WARN('simpleRadiation’,’No Emissivity found.”)
RETURN ! no flux without or with unphysical emissivity

END IF

ExtTemp(1l:nboundary) = GetReal( BC,’External Temperatur e’,Gotlt)
IF (.NOT.Gotlt) THEN
WRITE (Message, *) 'No external temperature defined at point no. ’, n
CALL Warn('simpleRadiation’, Message)
ExtTemp(1l::nboundary)= temp
END IF

Work => ListGetConstRealArray( BC,’Radiation Vector’,Go tlt)
IF ( Gotlt ) THEN
radvec = 0.0D00
NormDir = SQRT(SUM(Work(1:DIM,1) * Work(1:DIM,1)))
IF (NormDir /= 0.0d00) THEN
radvec(1:DIM) = Work(1:DIM,1) *Work(4,1)/NormDir
ELSE ! no radiation for weird radiation vector
Absorption = .FALSE.
END IF
ELSE ! no absorption without radiation vector
Absorption = .FALSE.
END IF

If absorption of an incoming radiation vector has to be cote@ithe surface normal has to be inquired

I get surface normals ( if needed )
!

IF (Absorption) THEN

U = BoundaryElement % Type % NodeU(BoundaryElementNode)

V = BoundaryElement % Type % NodeV(BoundaryElementNode)

Normal = NormalVector(BoundaryElement, ElementNodes, U, V, .TRUE))
END IF

Thereafter, the needed material parameters are read fremalterial section of the solver input file that
associated with the body for which the radiation boundanda@on is computed

I get material parameters from parent element
!

ParentMaterial => GetMaterial(ParentElement)
! next line is needed, if the consequently read
| parameters are themselves user functions
|

CurrentModel % CurrentElement => ParentElement

Density(1:nparent) = GetReal(ParentMaterial, 'Density’ , Gotlt)
IF ((NOT.Gotlt) Density(1:nparent) = 1.0d00
HeatCapacity(1:nparent) = GetReal(ParentMaterial, 'Hea t Capacity’, Gotlt)

IF (.NOT.Gotlt) HeatCapacity(1:nparent) = 1.0d00

! put default pointer back to where it belongs
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!
CurrentModel % CurrentElement => BoundaryElement

Since these material parameters themselves may be givemrmdf user functions, the default pointer
CurrentModel % CurrentElement has to be set to the parent element upon call of the function
GetReal .

Finally the two parts of the total normal heat flux are evaddail he external load is obtained by dividing
this Laue by the inquired values fBrensity andHeatCapacity

I compute flux and subsequently load
!

IF (Absorption) THEN
normalabsorbtion = -1.0D00 & ! since normal pointing outwar ds
*  Emissivity * DOT_PRODUCT(Normal,radvec)
IF (normalabsorbtion < 0.0d0) &
normalabsorbtion = 0.0d00

ELSE
normalabsorbtion = 0.0d00
END IF
emission = StefanBoltzmann *  Emissivity * &
( temp *+ 4 - ExtTemp(BoundaryElementNode) ** 4) &
| (HeatCapacity(ParentElementNode) * Density(ParentElementNode))

load = normalabsorbtion + emission

END FUNCTION simpleRadiation

Figure12.4shows the result of the heat conduction solver presentegtiiosi12.4in combination with
the functionsimpleRadiation as boundary condition on two oppositely directed boundgkbeundary
condition no. 1). Since the radiation vector is aligned wiith z-direction and hence perpendicular with
respect to these two boundaries, the absorption part vesfsi one of these boundaries. For the sake of
simplicity, the material parametessc, andk have been set to unity. The corresponding entries of thesolv
input file for the boundary conditions of the case shown in ERj4are:

Boundary Condition 1
Target Boundaries(2) = 1 2
Boundary Type = String "Heat Flux"
External Load
Variable Temp
Real Procedure "radiation_flux.exe" "simpleRadiation"
External Temperature = Real -20.0E00
Radiation Vector(4) = Real -1.0E00 0.0E00 0.0E00 1.0EO01
Emissivity = Real 0.5
End

Boundary Condition 2
Target Boundaries = 3
Boundary Type = String "Given Temperature"
Temp = Real 0

End

Boundary Condition 3

Target Boundaries = 4

Boundary Type = String "Adiabatic"
End
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Tenp

Figure 12.4: Result of the heat conduction solver applyhey ¢implified radiation boundary condition
described in this section. The coordinate directions a$ agthe number of the corresponding boundary
condition section are shown. The latter can be comparecttsdiver input file entries shown in this section.
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12.4 Writing a Solver

In EImer an additional solver may be provided by dynamiditiiged subroutines. The pre-defined interface
of a solver subroutine is

SUBROUTINE mysolver( Model,Solver,dt, TransientSimulat ion )
TYPE(Model_t) :: Model
TYPE(Solver_t) :: Solver
REAL(KIND=dp) :: dt
LOGICAL :: TransientSimulation

The first argumentModel , is the same structure also passed to a user function (sgensé2.3. The
second argumengolver |, is of typeSolver_t and contains all information upon options set for this
particular solver. The timestep sizdt, , and a boolean variabl&@ransientSimulation , indicating
whether the solver is to be run as a part of a transient (VAIRAJE. ) or steady state (value .FALSE.)
simulation are further arguments of the solver subroutine.

12.4.1 Structure of a Solver

The well known structure of a linearized partial differah#quation (PDE) for the scald@rin the variational

formulation is
0T}

ot
with the mass matrixiVl; ;, the stiffness matrixA; ; and the force vectoi;.

Time-stepping and the coupled solver iteration — i.e., thady state or time level iteration of several
solvers of the simulation — is taken care of by the main parthefEImer Solver. The task of the user
supplying a user defined solver subroutine is to linearizeantually nonlinear PDE and to supply the
Elmer Solver with the element-wise components for the ro@gras well as the force vector.

This leads to a principle structure of a user defined solveratine as it is depicted in Figl2.5 We
further will explain the construction of a user solver sulioe by discussing an example case.

M + AT, =F, (12.4)

12.4.2 Example: Heat Conduction Equation

In order to provide a simple example, we want to explain hogvgblution of the purely convective heat
transport equation is implemented in Elmer. This exampjgagrs:

e reading solver parameters from the solver input file

e assembly of the local element matrix components for the doarad a Neumann condition including
explanation of the most important EImer Solver routinesdeelefor linear system matrix assembly
and solution

o how to deal with non-linear and transient PDE’s

e how to implement Dirichlet boundary conditions
For constant density, and heat capacity, this equation may be written as
oT k h
— =V (—VT)=—, (12.5)
ot Cp O Cp O

whereT stands for the temperaturefor the heat conductivity and is the heat source.
The variational formulation ofl2.5 reads after partial integration of the conduction termamglication
of Green’s theorem

aT%dV—l—/iVT- V7~ dV =
ot Cp O
v

v

/ Lav+ 74 (kVT) i1 idA, (12.6)

—Qn
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ElmerSolver Main

| Steady state iteration (coupled system)
User Subroutine

— Initialization

Nonlinear iteration loop

Domain element loop

often provided as
subroutine inside
the solver routine

Matrix assembly for domain element

until last bulk element

Boundary element loop

often provided as
subroutine inside
the solver routine

Matrix assembly for von Neumann ang
Newton conditions at boundary element

=

until last boundary element

— set Dirichlet boundary conditions

— solve the system

relative change of norms < Nonlinear Tolerance
or
nonlinear max. iterations exceeded

. relative change of norms < Steady State ToIeranée

until last timestep

Figure 12.5: Flowchart of a user defined solver subroutirteiwiElmer Solver. The grey underlayed area
indicates the tasks of a simulation that are provided by Elmleereas the white area contains the flowchart
for the source code of the user subroutine. Arrows pointibgthis field indicate needed subroutine/function
calls to Elmer Solver.
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wherev; is the basis-functiorly anddV is the element volume and its enclosing surface, respégctiVee
surface normal 0V is denoted byi. According to the Galerkin method, the variable is givef'as T+,
with the sum taken over the indgx Comparing with {2.4 leads to the matrices and vectors

M, Z/’Yj%‘ av,

|4
k
A= | —Vy; - Vv,
g /cpg L (12.7)
|4
h Gn
Fl‘ = —V’}/i dv + Yi dA.
Cp O Cp 0

=l

Although the external heat flux perpendicular to the surfaeemal, ¢,,(T"), in general is a function of
the temperature we want to keep it formal as being prescrilséehce, only a contribution in the force
vector occurs in our formulation. Mind, that a linear or Bmized expression af, (T) directly could give a
contribution to the stiffness matrix at the entries coroasting to boundary nodes. In our approach, even in
the case of a linear dependengyT") « 7" we have to iterate the solution because of our treatmenteof th
boundary condition.

The header contains the declaration needed variables —iaettr give them self explaining identi-
fiers. Furthermore, allocations of the needed field arragslane for the first time the subroutine is visited
(checked by the boolean variabdlocationsDone ). The variable names of these arrays then have to
be included in th&&AVEstatement at the end of the variable declaration block.

SUBROUTINE MyHeatSolver( Model,Solver,dt, TransientSim ulation )
USE DefUtils

IMPLICIT NONE

TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model

REAL(KIND=dp) :: dt
LOGICAL :: TransientSimulation
|

I Local variables
|

TYPE(Element_t),POINTER :: Element
LOGICAL :: AllocationsDone = .FALSE., Found, Converged

INTEGER :: n, t, istat, other_body id, iter, Nonlinearlter

REAL(KIND=dp) :: Norm, PrevNorm=0.0d00, NonlinearTol, Re lativeChange
TYPE(ValuelList_t), POINTER :: BodyForce, Material, BC, So IverParams
REAL(KIND=dp), ALLOCATABLE :: MASS(;,:), STIFF(;;:), LOA D(:), FORCEC()
REAL(KIND=dp), ALLOCATABLE :: HeatCapacity(:), HeatCond uctivity(:),&
Density(:), ExternalTemp(:), TransferCoeff(;), HeatFlu x(2)

CHARACTER(LEN=MAX_NAME_LEN) :: BoundaryType

SAVE MASS, STIFF, LOAD, FORCE,&
HeatCapacity, HeatConductivity,&
Density, ExternalTemp, TransferCoeff, HeatFlux, &
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AllocationsDone, PrevNorm

lAllocate some permanent storage, this is done first time on ly:
I
IF ( .NOT. AllocationsDone ) THEN

N = Solver % Mesh % MaxElementNodes !big enough for elemental arrays

ALLOCATE( FORCE(N), LOAD(N), MASS(N,N), STIFF(N,N), STAT =istat )

IF ( istat /= 0 ) THEN

CALL Fatal( 'MyHeatSolve’,&
'Memory allocation error for matrix/vectors.’ )

END IF
ALLOCATE( HeatCapacity(N), HeatConductivity(N), Densit Yy(N),&
ExternalTemp(N), TransferCoeff(N), HeatFlux(N), STAT=i stat )
IF (istat /= 0 ) THEN
CALL Fatal( 'MyHeatSolve’,&
'Memory allocation error for parameter arrays.’ )

END IF
AllocationsDone = .TRUE.
END IF

In the next step, information on the nonlinear iteration &y read from the solver section of the solver
input file

IRead in solver parameters
|
SolverParams => GetSolverParams()
IF (NOT. ASSOCIATED(SolverParams))&

CALL FATAL('MyHeatSolve’,’'No Solver section found’)
Nonlinearlter = Getlnteger(SolverParams, &

'‘Nonlinear System Max Iterations’, Found)

IF ( .NOT.Found ) Nonlinearlter = 1
NonlinearTol = GetConstReal( SolverParams, &

'Nonlinear System Convergence Tolerance’, Found )
IF ( .NOT.Found ) NonlinearTol = 1.0D-03

Therafter, the nonlinear iteration loop (outermost loophaf white underlayed area in Fig2.5 is started
and the linear system solver is initialized (routDefaultinitialize )
I

I Nonlinear iteration loop
I

DO iter=1,Nonlinearlter
Converged = .FALSE.
WRITE(Message,’(A,15,A,15)") 'Nonlinear iteration no.’ Jiter,&
" of max. ', Nonlinearlter
CALL INFO('MyHeatSolve’,Message,level=1)

linitialize the system and do the assembly:
|

CALL DefaultInitialize()

The next loop is over all elements in the simulation domainsmiver has been assigned ®ofver %
NumberOfActiveElements ). The functionGetActiveElement inquires the element associated
with the element numbaer. This call at the same time also sets the default poiGtarentModel %
CurrentElement  to that particular element, which is important if subsedlyeralled functions rely on
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this pointer to be set correctly (see sectigh3. After inquiring the number of nodes the nodal material pa-
rameter values, — HeatCapacity(1:n) , k — HeatConductivity(1:n) ando — Density(1:n)

are read in. If one of these parameters is not found feund == .FALSE. ), a default value of 1 will
be set in order to avoid division by zero.

! Assembly for the domain
P

DO t=1,Solver % NumberOfActiveElements

I get element info

Element => GetActiveElement(t)
n = GetElementNOFNodes()

I get material parameters

!

Material => GetMaterial()

IF (.NOT. ASSOCIATED(Material)) THEN
WRITE(Message,’(A,I5,A)) &

'No material for bulk element no. 't,’ found.’
CALL FATAL('MyHeatSolve’,Message)
END IF
HeatCapacity(1:n) = GetReal(Material, 'Heat Capacity’, F ound )

IF (NOT. Found) HeatCapacity(1:n) = 1.0D00
HeatConductivity(1:n) = &

GetReal(Material, 'Heat Conductivity’, Found )
IF (NOT. Found) HeatCapacity(1:n) = 1.0D00
Density(1:n) = GetReal(Material, 'Density’, Found )
IF (NOT. Found) Density(1:n) = 1.0D00

In order to call the subroutine taking care of the compositib the element matrices and force vector
(subroutineLocalMatrix ), the load vector — in our case the heat soufce;> LOAD(1:n) — has to
be read from the body section of the solver input file. In thgecaf a transient simulation (indicated by
TransientSimulation == .TRUE. ) the first order time discretization is accounted for using t
subroutineDefaultlstOrderTime . Mind, that also higher order time discretization routimexild be

at hand. The local matrix is added to the global coefficientrinaf Elmer Solver calling the subroutine
DefaultUpdateEquations

IGet load for force vector
!
LOAD = 0.0d0
BodyForce => GetBodyForce()
IF ( ASSOCIATED(BodyForce) ) &

LOAD(1:n) = GetReal( BodyForce, 'Heat Source’, Found )

IGet element local matrix and rhs vector:
|

CALL LocalMatrix( MASS, STIFF, FORCE, LOAD, Element, n,&
HeatCapacity, HeatConductivity, Density, TransientSimu lation)

IlUpdate global matrix and rhs vector from local matrix & vect or:
| mmcmmmmmmmmmmmmmmmmmmmmmmeee s
IF ( TransientSimulation ) THEN
CALL DefaultlstOrderTime( MASS,STIFF,FORCE )
END IF
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CALL DefaultUpdateEquations( STIFF, FORCE )

END DO ! end Assembly for the domain
oo mmmmmmmmmmmmmmmmmmeee e

After the bulk elements, the contribution to the coefficiewttrix and the force vector from a Neumann type
of boundary condition has to be taken into account. To thik @@ are looping over all boundary elements.
Their total number is given bySolver % Mesh % NumberOfBoundaryElements . The routine
ActiveBoundaryElement checks whether the previously inquired element is part afimdary condi-
tion that has been assigned to our solver. If the value 1usmetl from the functio®etElementFamily

—i.e. we are dealing with boundary element given at a poerneht — the element also will be skipped,
since Neumann conditions cannot be set on such elemengslyi-ihe list-pointer to the associated boundary
condition sectionGetBC) is set and the local matrices and vectors are initiatedo. ze

! assembly of Neumann boundary conditions
| mmcmmmmmmmmmmmmmmmmmmmmmmmmmee e

DO t=1, Solver % Mesh % NumberOfBoundaryElements

I get element and BC info
I
Element => GetBoundaryElement(t)

IF ( .NOT.ActiveBoundaryElement() ) CYCLE
n = GetElementNOFNodes()

I no evaluation of Neumann BC’s on points
IF ( GetElementFamily() == 1 ) CYCLE

BC => GetBC()

FORCE = 0.0d00
MASS = 0.0d00
STIFF = 0.0d00

Since we have to define between different types of boundamgitons, we inquire the contents of a keyword
Boundary Type from the solverinputfile. If this string is equal teeat flux’ , the variable with the
nameExternal Load’ will be read in from the boundary condition IBC. Thereafter, the contribution
to the force vector will be computed by the internal subm@BoundaryCondition (see later in this
code). Mind, that the external load is not the given heat fjyxbut its value divided by the heat capacity
and the density] = ¢, /(c, 0). This has to be taken care of if a numerical value or even afusetion

is provided in the solver input file (see sectid®.3.3. In the case of no boundary type being found or
an unknown string being detected, the natural boundaryitondzero flux perpendicular to the surface,
will be assumed. This is equivalent to tteliabatic’ boundary condition. In the case fiven
temperature’ the natural boundary condition will be altered by the mamianipulation arising from
the Dirichlet boundary condition (see later in this code).

I check type of boundary and set BC accordingly
I
BoundaryType = GetString(BC,'Boundary Type’,Found)
IF (NOT. Found) CYCLE
I natural boundary condition
IF ((BoundaryType == ’adiabatic’)&
.OR. (BoundaryType == ’given temperature’)) THEN
CYCLE
I external heat flux
ELSE IF(BoundaryType == ‘heat flux’) THEN
I get external load; mind that this is the heat flux
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I divided by the density and heat capacity
LOAD(1:n) = LOAD(1:n) + GetReal(BC, External Load’, Found )
I do the assembly of the force vector
CALL BoundaryCondition(LOAD, FORCE, Element, n)
ELSE
WRITE(Message,’(A,13,A))&
'No boundary condition given for BC no. ',GetBCld(),&
. Setting it to adiabatic.’
CALL WARN('MyHeatSolve’,Message)
CYCLE
END IF

The boundary element loop is closed after the componen¢msystatrix and vector are updated for the
current boundary element.

IF ( TransientSimulation ) THEN

MASS = 0.d0
CALL DefaultlstOrderTime( MASS, STIFF, FORCE )
END IF

CALL DefaultUpdateEquations( STIFF, FORCE )

Before setting the Dirichlet conditions (i.e., given boangtemperaturé’) using the subroutinBefaultDirichletBCs()
itisimportantto finish the element-wise assembly of the&tI8olver system matrix callifgefaultFinishAssembly

CALL DefaultFinishAssembly()

I call ElImer Solver routine for Dirichlet BCs
|

CALL DefaultDirichletBCs()

The system is solved by the function cBlefaultSolve , which returns the normiN™ of the solution
vectorT; for then-th nonlinear iteration step. This is needed in order to irggthe change of the solution
between two steps. If the relative norm

Nn—l _ N
R= 27| | ,
Nn—l + Nn
is smaller than the given toleran®onlinear System Tolerance of the solver section, then the

nonlinear iteration is taken to be converged.

! Solve the system

Norm = DefaultSolve()

I compute relative change of norm
!
IF ( PrevNorm + Norm /= 0.0d0 ) THEN

RelativeChange = 2.0d0 * ABS( PrevNorm-Norm ) / (PrevNorm + Norm)

ELSE
RelativeChange = 0.0d0
END IF
WRITE( Message, * ) 'Result Norm : ",Norm
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CALL Info( 'MyHeatSolve’, Message, Level=4 )
WRITE( Message, * ) 'Relative Change : ’,RelativeChange
CALL Info( 'MyHeatSolve’, Message, Level=4 )

! do we have to do another round?
|
IF ( RelativeChange < NonlinearTol ) THEN ! NO
Converged = .TRUE.
EXIT
ELSE ! YES
PrevNorm = Norm
END IF

END DO ! of the nonlinear iteration
| mmcmmmmmmmmmmmmmmmmmmmmmmmmmee e

After leaving the nonlinear iteration loop the status ofwngence shall be displayed on stdio

! has non-linear solution converged?
!
IF ((NOT.Converged) .AND. (Nonlinearlter > 1)) THEN
WRITE( Message, =* ) 'Nonlinear solution has not converged’,&
'Relative Change=',RelativeChange,’>’,NonlinearTol
CALL Warn('MyHeatSolve’, Message)

ELSE
WRITE( Message, =* ) 'Nonlinear solution has converged after ',&
iter,” steps.’
CALL Info(MyHeatSolve’',Message,Level=1)
END IF

In the code lines given above, the user could exchange thimeM/arn by Fatal if the simulation should
stop upon failed nonlinear iteration convergence.
Further we have to include the needed local subroutineg tiseFortran 90 command

I internal subroutines of MyHeatSolver
U,

CONTAINS

The subroutind.ocalMatrix ~ composes the local matrices and vectors for a bulk elememt. hEader
with the variable declaration reads as follows

| mmcmmmmmmmmmmmmmmmmmmmmmmmmee e
SUBROUTINE LocalMatrix(MASS, STIFF, FORCE, LOAD, Element , n, &
HeatCapacity, HeatConductivity, Density, TransientSimu lation)
IMPLICIT NONE

REAL(KIND=dp), DIMENSION(:,:) :: MASS, STIFF
REAL(KIND=dp), DIMENSION(:) :: FORCE, LOAD, &
HeatCapacity, HeatConductivity, Density

INTEGER :: n
TYPE(Element_t), POINTER :: Element
LOGICAL :: TransientSimulation

REAL(KIND=dp) :: Basis(n),dBasisdx(n,3),ddBasisddx(n, 3,3)
REAL(KIND=dp) :: detJ, LoadAtIP,&
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LocalHeatCapacity, LocalHeatConductivity, LocalDensit y
LOGICAL :: Stat
INTEGER :: t,i,j,DIM
TYPE(GaussintegrationPoints_t) :: IP

TYPE(Nodes_t) :: Nodes
SAVE Nodes

For the sake of simplicity we use the same identifiers as irstiheer subroutine for the variables in the
argument list.

The next step is to inquire the dimension of the coordinastesy. Thereafter, we get the nodes of the
element using the already introduced funct®etElementNodes . Since the values i@urrentModel
% CurrentElement andCurrentModel % Solver have been set, no additional arguments to the
variableNodes have to be set. After we have initialized the local matrix &adtor components to zero, the
information upon the Gauss-points needed for integratigmquired by the functioGaussPoints . They
returned variabléP is of typeGaussintegrationPoints_t

DIM = CoordinateSystemDimension()

CALL GetElementNodes( Nodes )

STIFF = 0.0d0
FORCE = 0.0d0
MASS = 0.0d0

INumerical integration:
|

IP = GaussPoints( Element )

The integration over the element is done by summing over allgs-points (from 1 t&Vip — IP % n.
The square root of the determinant of the element coordsystiem metric tensoy/det(J7 - J) —DetJ

as well as the local basis functiong, — Basis , their derivativesVv; — dBasisdx , are evaluated
for every Gauss-point using the functi@dementinfo . The variableddBasisddx is just passed as a
dummy argument, since the last argumeetSecondDerivatives is setto.FALSE. . The pointer to
the elementElement , and its nodes\odes and the local variables of the Gauss-poifts% U(t) , IP

% V() andIP % W(t) , are needed as input.

! Loop over Gauss-points (element Integration)
S
DO t=1,IP % n
IBasis function values & derivatives at the integration poi nt:
e meem e
getSecondDerivatives = .FALSE.
stat = Elementinfo( Element, Nodes, IP % U(t), IP % V(t), &
IP % W(t), det], Basis, dBasisdx, ddBasisddx, &
getSecondDerivatives)

Thereafter, the material parameters at the Gauss-pomts/atuated, using the basis function. For instance,
the local densityp|;p — LocalDensity  at the Gauss-point is evaluated as follows:

Q|1P = Qz‘%|1p7

with the sum taken over the nodal indéx The load vectoh/(oc,)|ip — LoadAtlP is evaluated in a
similar way.
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IMaterial parameters at integration point:
|

LocalHeatCapacity = SUM( HeatCapacity(1:n) * Basis(1:n) )
LocalHeatConductivity = SUM( HeatConductivity(1:n) * Basis(1:n) )
LocalDensity = SUM( Density(1:n) * Basis(1:n) )

IThe source term at the integration point:
|

LoadAtIP = SUM( Basis(1:n) * LOAD(1:n) ) &
/(LocalHeatCapacity * LocalDensity)

The force vector is obtained by the integral over the elemghich is approximated by the sum over all
Gauss-point contributions

Nip

h h
= [ ooy =3 (VB a3 ) e
v t=1

The model coordinate system metiigls2 — IP % s(t) as well as the previously inquired element
coordinate system metrig/det(J7 - J) — DetJ have to be taken into account.
The matrix components are evaluated in complete analodyetéorce vector

Nip

My = /’yﬂi v~ Z (” ds®y/det(JT 'J)’Yj%) 1P,
\4 t=1
Nip

k k
Aij= | =V - VyidV = Y | Vds? T.J)—— (Vv - V)| e,
; /c,,g % Vid ;_1:[ B2\t ) (7 w] ip
J ~

where the dot product of the first derivatives of the basicfion is implemented using the expression
V7; - Vi — SUM(dBasisdx(i,1:DIM) * dBasisdx(j,1:DIM))

! Loop over j-components of matrices and over force vector
|

DO j=1,n
FORCE() = FORCE() + IP % s(t) * Det] » LoadAtlP * Basis())

! Loop over i-components of matrices

DO i=1,n
IThe mass matrix, if needed
!
IF (TransientSimulation) THEN
MASS(i,j)) = MASS(i,j)+ IP % s(t) * Det] * &
Basis(i)  *Basis(j)

END IF

IFinally, the stiffness matrix:
!
STIFF(i,j) = STIFF(i,)) &
+ IP % s(t) = Detd » LocalHeatConductivity &
* SUM(dBasisdx(i,1:DIM) * dBasisdx(j,1:DIM))&
/(LocalDensity * LocalHeatCapacity)
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END DO ! end Loop over j-components of matrices and vector

END SUBROUTINE LocalMatrix
fem o mmmmmmmmmmmmmmmmmmmmmmmemeee

The last two statements in the code sequence given abowetblesoop over the Gauss-points and provide
the end statement of the local subroutinecalMatrix

The subroutind8oundaryCondition evaluates the contribution to the force vector at the bognele-
ments with given external lodd= ¢,,/(c, ©) — LOAD

Nip
F; = %ldv ~ Z (\/ds%/det(JT -J)l) |tp-
t=1

oV

Since this is implemented in complete analogy to the assedafltthe force vector in the previously discussed
subroutind_ocalMatrix , a detailed explanation can be omitted

SUBROUTINE BoundaryCondition(LOAD, FORCE, Element, n)
IMPLICIT NONE

REAL(KIND=dp), DIMENSION(:) :: FORCE, LOAD
INTEGER :: n
TYPE(Element_t), POINTER :: Element

REAL(KIND=dp) :: Basis(n),dBasisdx(n,3),ddBasisddx(n, 3,3)
REAL(KIND=dp) :: detJ, LoadAtIP,&
LocalHeatCapacity, LocalDensity
LOGICAL :: stat, getSecondDerivatives
INTEGER :: t
TYPE(GausslintegrationPoints_t) :: IP

TYPE(Nodes_t) :: Nodes
SAVE Nodes

CALL GetElementNodes( Nodes )
FORCE = 0.0d0
INumerical integration:

!
IP = GaussPoints( Element )

! Loop over Gauss-points (boundary element Integration)

DO t=1,IP % n
IBasis function values & derivatives at the integration poi nt:
I e
getSecondDerivatives = .FALSE.
stat = Elementinfo( Element, Nodes, IP % U(t), IP % V(t), &
IP % W(t), detJ, Basis, dBasisdx, ddBasisddx, &
getSecondDerivatives)
IThe source term at the integration point:
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!
LoadAtIP = SUM( Basis(1:n) * LOAD(1:n) )

DO j=1,n
FORCE() = FORCE() + IP % s(t) * Det] » LoadAtlP * Basis(j)
END DO
END DO

END SUBROUTINE BoundaryCondition
Do mcmmmcmeeeee el

The Fortran 90 file is completed providing the end statenwarihe user solver subroutihdyHeatSolver

END SUBROUTINE MyHeatSolver
L

12.4.3 User Defined Functions and Subroutines in Parallel

User defined functions (boundary and initial conditions a#f s body forces) and routines (solvers) do not
have to be especially adopted to be run withiBlmerSolver_mpi  call. Nevertheless, there might be
special situation that demand additional code-lines tadagsues caused by parallel execution. To that end,
one has to be able to retrieve certain information on thellehesmvironment. Therefore, a special type exist
within Elmer with the following entries:

TYPE ParEnv_t

INTEGER . PEs

INTEGER ;. MyPE

LOGICAL ;o Initialized
INTEGER :» ActiveComm
LOGICAL, DIMENSION(:), POINTER ;o Active

LOGICAL, DIMENSION(:), POINTER :: IsNeighbour
LOGICAL, DIMENSION(:), POINTER :: SendingNB
INTEGER - NumOfNeighbours

END TYPE ParEnv_t
The following list shall give an overview of the most impart@perations in this context:

How many parallel processes/domains are there in the currdrrun? This can be accessed by
the construcParEnv % PEs. For instance, the following line can be used to introduceaath
between instructions for a serial and a parallel Elmer run:

I serial run
IF ( ParEnv % PEs <= 1 ) THEN

ELSE ! parallel run

ENDIF

What parallel process/domain is the current task being run m? This number can be inquired via
the construcParEnv % myPe

What parallel process/domain my element belongs toff the pointerCurrentElement  is point-
ing to the actual element of interest, the host process/doimaCurrentElement % partindex

For instance, in combination with the instruction in thevyioes point, this can be used to inquire
whether an element actually is being processed within timeadio (is part of the domain’s matrix) or
is just an halo-element:
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! skip rest of routine, because element is not
! part of the domain (halo-element)
IF (ParEnv % myPe .NE. Element % partindex) CYCLE

Is the parallel process/domain with indexi a neighbour of my current process/domain?This is
inquired by the logical value iRarEnv % IsNeighbour(i)

How many neighbour processes/domains does my current pross/domain have?This is inquired
by the logical value irParEnv % NumOfNeighbours

2 A e o O O S S

12.5 Compilation and Linking of User Defined Routines/Fundbns

Elmer provides a scriglmerf90  (residing insELMER_HOME/bin) for compilation of external routines.
This makes sure that the same compiler the Elmer instatldias been compiled with is used for compi-
lation of the additional routines. This is necessary, aallgunodules of different Fortran compilers are
incompatible. Additionally, the script contains the nesaag compiler options in order to take care that the
essential libraries are being linked to the resulting sthatgect.

Compilation of ones own code is quite straight forward. Essential, that the wrappelmerf90 isin
the path of the system (or alternatively called with its gatceded). If now the routines/functions are in the
file mySolver.f90  then the dynamically linked object is obtained under UNIX/(ix with the command

elmerf90 mySolver.f90 -o mySolver

Under Windows XP, compilation can be made via the EImerGUhanually using the command window
(Windows XP: Start— Run, entecmd). Preferably, the source file should be in the tree of the E(@.g.,
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Figure 12.6: Manual compilation of additional modules imdbws XP

C:\ElImer6.0 ) installation under the director@:\EImer6.0\share\elmersolver\lib . From
within this directory, the command

elmerf90 myOwnRoutines.f90

should create the shared objetySolver.dll that should be found automatically in every Elmer run.
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Format of mesh files

In this appendix the format of EImerSolver mesh files is desti The mesh data are arranged into four sepa-
rate files:mesh.header , mesh.nodes , mesh.elements , andmesh.boundary . Here the contents
of these files will be described.

In the mesh files numeric codes are used for distinguishiffgrdint element types. For the element type
codes and the node numbering order of the elements see @lsndigD.

A.1 The format of header file

The header filanesh.header tells how many nodes and elements are present in the mesHhin€bef
this file are organized as

nodes elements boundary-elements
nof_types

type-code nof_elements

type-code nof _elements

In the first line the numbers of nodes, elements, and bourelargents are given, while the count in the
second line is the number of different element types usetiénntesh. The lines which follow give the
numbers of elements as sorted into different element types.

For example, the following header file

300 261 76
2

404 261
202 76

tells us that the mesh is composed of 300 nodes, 261 elensmnts6 boundary elements. Two different
element types are used in the mesh: there are 261 elemengfzeatdde 404 (bilinear quadrilateral) and 76
elements of type code 202 (linear line element).

A.2 The format of node file

The file mesh.nodes contains node data so that each line defines one node. Eachtdiris with two
integers followed by three real numbers:

nilpxyz
n2 pxyz

npxyz
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The first integer is the identification number for the nodee $hacond integer is a partition index for parallel
execution and is not usually referenced by the solver in #se ©f sequential runs. If the partition index is
not of particular use, it may be set to be -1 (or 1). The reallmenmare the spatial coordinates of the node.
Three coordinates should always be given, even if the stinalavas done in 1D or 2D. It is also noted that
the nodes may be listed in any order.

A.3 The format of element file

Themesh.elements file contains element data arranged as

el body type nl ... nn
e2 body type nl ... nn

en body type nl ... nn

Each line starts with an integer which is used for identifythe element. The integbiody defines the
material body which this element is part of. Then the elenigm code and element nodes are listed. For
example, the element file might start with the following Ene

1140412 32 31
21 404 2 3 33 32
31404 3 4 34 33
4 1 404 4 5 35 34

A.4  The format of boundary element file

The elements that form the boundary are listed in therfiesh.boundary . This file is similar to the
mesh.elements file and is organized as

el bndry pl p2 type nl ... nn
e2 bndry pl p2 type nl ... nn

en bndry pl p2 type nl ... nn

The first integer is again the identification number of thermary element. Next the identification number
of the part of the boundary where this element is locatedvisrgi Whether the boundary element can be
represented as the side of a parent element defined in thedgb.elements s indicated using the two
parent element numbepd andp2. If the boundary element is located on an outer boundaryebtidy,

it has only one parent element and either of these two intagay be set to be zero. It is also possible that
both parent element numbers are zeros. Finally the elepgatiode and element nodes are listed.
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Appendix B

Format of result output files

B.1 Format versions

Result files can be written as either ASCII text or in binarigisTis controlled by the parameter
Binary output = logical true|false

in the 'Simulation’ section of the .sif file. Default false
The format of the file is recorded on it’s first lidgt's either

BINARY w.e
or
ASCIl v

The v at denotes the version number of the format, andetirethe binary format denotes an endianess-
marker; eithet for little endian orB for big endian.

ElmerSolver can read files of older format versions for méisig, but all new files are written in the
newest formats. The current formats documented here arél A8Gion 1 and BINARY version 2.

B.2 General structure

Both binary and ASCII files have the following general sturet In the binary files, the header is separated
from the rest by a null byte. The ASCII format has no such sstpar

[File format version line]
[Header]

[<null byte> (binary only)]
[timestep 1]

[timestep 2]

[timestep 3]

[timéstep nj

lexcept for old ASCII files, that lack the format version lim@d start with IFile started at:
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B.2.1 The header
The header looks the same for both binary and ASCII (ans tsemrin ASCII also for binary files):

IFile started at: date tine
Degrees of freedom:

variable 1 nl s
variable 2 n2 s
variable 3 n3 s

Total DOFs: nTotDOFs
Number Of Nodes: nNodes

Note that in the list of variables, vectors appear both akove¢DOF > 1) and separate components (DOF =
1).

B.2.2 Timesteps

For each time step, the time and the values of the variabéestared. For vector variables, the components
are stored as separate variables, typically nanaedame 1varname 2etc.
If the parameter

Omit unchanged variables in output = logical true|false

in the 'Simulation’ section of the .sif file is set taue , only variables whose values has changes since last
time are saved. Default false
For the binary format, the following type specifiers are uigetthis document:

<s(str) > Null terminated string of characters.
<i(i4) > 4 byte integer.

<j(i8) > 8 byte integer.

<z(dbl) > 8 byte floating point number.

For this part of the file, the general structure of binary ai8CA files are essantially the same, with just
some minor differences:
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ASCII Binary

Time: ns nt ¢ <Time: (str) ><ns(i4) ><ni(i4) ><t(dbl) >
Variablename_1 <Variablename_(str) >

[Permutation table 1] [Permutation table 1]

: . : . Variable 1's values
.Vm"l(pl (4)) fVarl(Pl(l))(dbD > istpi(i) > 0.
Variablename_2 <Variablename_g@tr) >

[Permutation table 2] [Permutation table 2]

' . : . Variable 2's values
.VCWQ(Pz(Z)) .<V€l7“2 (p2(i))(dbl) > Vi stpa(i) > 0.
Variablename_3 <Variablename_@tr) >

[Permutation table ps] [Permutation table s3]

' . : . Variable 3's values
Vars(ps(i)) <Vars(ps(i))(dbl) >

Vis.t.ps(z) > 0.

nt=time step numbens= saved time steps numbé, time.

The permutation tables
The permutation tables can be stored in three different ways

1. As an explicit table:

ASCII Binary
Perm: size np <size(i4) ><np(i4) >

Permutation indexes

i (i) <i(ia) ><p(i)(id) > and value (i)
. . Vis.t.p(i) > 0.

size = total size of the permutation table (> 0), amg = number of positive values in the table.

2. If the permutation table is the same as for the previouabk, there’'s no need to store it again. This
case is written as

ASCII Binary
Perm: use previous <—1(i4) ><Pos(i8) >

Pos in the binary format is the position in bytes of the previcaisi¢.
3. No permutation table; corresponds to the case
size = np = nNodes, andp(i) =1 V1.
This case is stored as

ASCII Binary
Perm: NULL <0(i4) >
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B.3 The positions file

For binary format, a positions file namealitputfilepos’ will be created. It contains the positions (in bytes)
of the timesteps and variables in the result file, expressefli layte integers. It has the following format
(nVar = number of variables):

<Endianess-markéthar) >
<nVar(i4) >

<varname {str) >
<varname &tr) >

<varname nVgstr) >
<Pos. for Timestep(@8) >
<Pos. for variable @8) >
<Pos. for variable @) >

<Pos. for variable: Var(i8) >
<Pos. for Timestep@®) >
<Pos. for variable @8) >
<Pos. for variable @) >

<Pos. for variable: Var(is) >
<Pos. for Timestep@®) >
<Pos. for variable @8) >
<Pos. for variable @) >

<Pos. for variable: Var(is) >

Note: Positions are saved fall variables for every time step; even if an unchanged variablesaved
to the result file for a time step, it will still have a positionthe .pos file (i.e. the position of where it was
saved last time). Because of this all timesteps has the samef$n Var + 1) x 8 bytes. Finding the position
of then:th variable of then:th time step is therefore easy; it's found at the

(size-of-heade# ((nVar +1) x (m —1)+n) x 8) : th

byte in the positions file.
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Format of EImerPost Input File

The lines of EImerPost input file are organized as

nn ne nf nt scalar. name vector: name ...

x0 y0 zO

I nn rows of node coordinates (x,y,z)
XN yn zn

group-name element-type i0 ... in

I group data and element decriptions
group-name element-type i0 ... in

#time 1 timestepl timel

VX VY VZ P ..

I nn rows

VX VY VZ P ..

#time 2 timestep2 time2

VX VY VZ p

I nn rows

VX VY VZ P ..

#time n timestepn timen

VX VY VZ P ..

I nn rows

VX VY VZ P ..

The header

The file starts with the header line which contains the foifmyunformation:
e nn: the total number of nodes

e ne: the total number of the elements including boundary eldémen

nf : the total number of degrees of freedom, i.e. the total nurabscalar unknowns in the model

e nt : the number of time steps for which solution data is stored

scalar: name vector: name ... : the list which pairs variable names with their types.

The mesh and group data

After the header the node coordinates are given, each cwtediriplet on its own row. Three coordinates
shoud be given even if the model was two-dimensional.
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Group data consist of the following information:
e group-name : the name of the element group (having the same materiay, &icd)

e element-type :the numeric code giving the element type; see also Appeddix

e The numberf ... in are the indeces of the element nodes. The nodes are refdnesing the
row indeces of the node coordinate array at the beginninigeofite The first node in the array has the
index zero.

Itis noted that there is also another level of element gmogithiat can be employed as follows

#group groupl
element-definitions

#group group2
element-definitions

#endgroup group2
element-definitions

#endgroup groupl

The number of element groups is not restricted in any way.

The solution data

For each timestep the following solution data is written:

e #time n t time : n is the order number of the solution data getis the simulation timestep
number, andime is the current simulation time.

e The nextnn rows give the node values of the degrees of freedom. The valieelisted in the same
order as given in the header with the keywosdalar: ~ andvector:

An example file

Here a very simple example file is given. There is only one elamthree nodes, one variable, and the
solution data are given for a single timestep:

3 1 1 1 scalar: Temperature
000

100

010

#group all

bodyl 303 0 1 2
#endgroup all
#time 1 1 0

1

2

3
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Basic element types

The basic element types which ElmerSolver can handle arkntb@& and quadratic elements in one, two,
and three dimensions:

e linear (element type code 202) and quadratic (203) eleniemtise dimension

e linear (303) and quadratic (306) triangles with three ardsides, respectively; see Figudel

Figure D.1: The linear (303) and quadratic (306) triangelaments.

e bilinear (404) and quadratic (408,409) quadrilateral$atur, eight, and nine nodes, respectively;
see Figurd.2

e linear (504) and quadratic (510) tetrahedrons with fourtamchodes, respectively; see Figir&

e trilinear (808) and quadratic (820,827) bricks with 8, 20d &7 nodal points, respectively; see Fig-
ureD.4.
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(0,0) u

Figure D.2: The four-node (404) and eight-node (408) quaterial elements.

Figure D.3: The linear (504) and quadratic (510) tetrahe@tements.
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Figure D.4: The 8-node (808) and 20-node (820) brick element
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Appendix E

Higher-order finite elements

E.1 Theory

Higher-order finite elements are elements for which the ele@f basis functions is higher than They
differ from usual Lagrange -type elements in a sense thatlditian to nodal basis functions there exists
basis functions, which are associated with edges, facemtaribrs of elements.

e Size modeget their values along some edge of element. They vanishréanather edges and all
nodal points of element. Side modes are defined for all 2d drede8nents.

e Face modegyet their values along some face of element. They vanishrtsaather faces and all
edges and nodal points of element. Face modes are only défingd elements.

¢ Internal modes get their values inside element and vanish towards elenfieces, edges and nodal
points. They are defined for all 1d, 2d and 3d elements.

Higher-order elements are usually also caje@lements. Properties for gopeelements include com-
putational efficiency, at least partial orthogonality amer&rchy of basis functions. With hierarchy we mean
that if basis for some element of some given degree3? for p + 1 it holds thatB? c BP+!. Orthogonal
properties of basis functions ensure, that condition nurobile global stiffness matrix does not increase as
dramatically as for nodal (Lagrange) elements of higheeordhis ensures good numerical stability. Some
good references to higher-order finite elements in litesatwe B] by Szabo and Babuska and] py Solin
etal.

The usual element interpolant, now denoted:as, is for p elements the sum of nodal, edge, face and
bubble interpolants

uh7P:u;)zp+ul€Lp+u£p+u2p (El)

whereu;, . is nodal interpolant as defined before axﬁdp edge uh face andub bubble interpolants. Let
n. be the number of edges ang number of faces in an element Edge and face interpolantiedireed as

Ne
€ — €;
Uhyp = Zuh,p
i=1
nf

f _ fi
Unp = Uh,p
i=1

Contribution of oney -element to global system is equivalent to thabeflement. Naturally for higher-
order elements the number of local stiffness matrix elesientontribute to global system is greater, because
of the larger number of basis functions.

Generally using -elements yields a better approximation than using normeal elements. In fact,
convergence fop elements is exponential when there are no singularitiedérs on the boundary of the
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solution domain. When there are singular points inside threain convergence is algebraic. If singular
point is a nodal point convergence is twice thahahethod, otherwise it is equal to themethod.

E.2 Higher-order elements in EImer

Elements implemented in EImer follow the ones presented]inNow let us define some orthogonal poly-
nomials based on Legendre polynomi#lgx),7 > 0. So called lobatto shape functions are defined
as

00(6) = | 3=y PO = Pia(©). k= 2.3.... €2

wherePy, are Legendre polynomials. Functigrhas two of its roots at-1, so now define another function,
©; as

er(§) = ?’5_]6—(52),

Functionse; and p; are used to define higher order elements. Different elenfeapes and their their
basis functions are defined in appenHiX. Pyramidal element used in Elmer is based loosely to Devloos
representation in7.

In EImer elements with varying polynomial degreenay be used in the same mesh. It is also possible
to combine elements of different types in the same mesh, fasedebasis functions for edges and faces
for different element types are compatible with one anoti®grramidal and wedge higher-order elements
to connect tetrahedral and brick elements are also sughorteachieve best possible converge the use of
pyramidal elements in a mesh should be kept to a minimum. &lntinuity of higher order finite element
space used is enforced by the solver, when metflechentinfo  is used for obtaining basis functions
values for elements.

To combine elements of varying degree in mesh maximum rulsésl. Thus if two or more elements
share an edge and have differing polynomial degrees, mamiofledge’s degrees is choosed as degree of
global edge.

To declare polynomial degree greater than one to an elemlement definition irmesh.elements
-file needs to be changed. Forelements, element definition syntax is

k=2,...,p (E.3)

Te[ppe]

whereT, = {202, 303,404, 504, 605, 706,808} is the element type ang. > 1 polynomial degree of
element. Setting. = 0 equals using normal linear basis defined in Elmer. For exangtriangle with
polymial degreet could be defined in mesh.elements file as follows

303p4

The actual number of degrees of freedom for edges, faceshinldmiof element types is defined by
element polynomial degrge Each degree of freedom in element is associated with sosie fumction.
The following table gives the number of degrees of freedonefements used in Elmer.
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| Element | Nodes| Edges | Faces Bubbles
Line 2 - - p—1
Quadrilateral| 4 4(p—1) - (p—2)2(p—3)
Triangle 3 3(p—1) - (pfl)g(pﬂ)
Brick 8 12(p—1) | 3(p—2)(p—3) (p—3>(pg4)(p—5)
Tetrahedron 4 6(p—1) | 2(p—1)(p—2) (pfl)(pg2)(p73)
Wedge 6 9(p—1) - (p—2)(p53)(p—4)
(quad. face) - - w _
(triang. face)| - - (p—1)(p—2) .
Pyramidi 5 8(p—1) - (p—l)(pg2)(p—3)
(quad. face) - - % _
(triang. face)| - - 2p-1)(p—2) .

It is worth noting, however, that used Solver (HeatSolvees3Solve, etc.) used must be modified to
support elements of higher degree. Usually this only cémsit making local stiffness matrix and force
vector larger.

A p-element passed to Elmer gaussian point gene@dossPoints  defined in moduléntegration
returns enough integration points to integrate worst casgyzt of two element basis functions. Here worst
case is integration over two basis functions for which = max{p., pf,p»}. As gaussian quadrature is
accurate to degree= 2n — 1, wheren is the number of points used, number of points for each eléimen
calculated from

_— 2pm +1
2
and rounded up to nearest integer. To get the final numberinfpimr multiple integralsy is raised to the
power of element dimension. If integral includes a non-tamisfactor, i.ef,. a¢;¢; wherea is a function
of degreét, numerical integration is not accurate and number of irtgin points needs to be set manually.
Now minimum number of gaussian points to integrate elemecirately becomes

(E.4)

i 2 m k, 3 m 1
p — min{2p +2 P} + (E.5)
which may again be rounded up to nearest integer and raigEmhter of element dimension to get the actual

number of integration points.

E.2.1 Boundary conditions

Boundary elements (elements, which lie on a boundary of gpadational domain) obey the parity of their

parent element. Basis for elements on boundary is definedagattrepresents a projection from high to

low dimension in element space. Thus it is possible to iregalong the boundary of the computational
domain and use values obtained to set Neumann boundarytioorsdfor example. Treatment of Neumann
and Newtonian is analogous to classical cases presentedrig fimite element method textbooks, except
for the greater number of basis functions to set.

In Elmer, Newtonial and Neumann boundary conditions ardgéntegrating over element boundaries
and contributing these integrals to global system. For drigitder elements this procedure may also be
used, because higher order functions of boundary elemeatgieen the direction of their parent. Thus
values returned for boundary element are equal to valudseafparent elements higher order functions on
element boundary. Indexes for contribution to global systeay be acquired from procedure defined in
moduleDefUtils

getBoundarylndexes( Mesh, Element, Parent, Indexes, indS ize )

which returns global indexes of contribution for boundalsngentElement to given vectorindexes
given the finite element medWiesh and parent elemerRarent of boundary element. Also the size of
created index vector is returnedit@Size
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Nonhomogeneous Dirichlet type boundary conditions, €.g. g, on9T are more difficult to handle for
higher order elements. Even though the nodal values arerknibw coefficients of higher order functions
are linear combinations over whole element boundary arslitttannot be set as a nodal value.

SubroutineDefaultDirichletBCs solves unknown coefficients of higher order functions by-min
imizing boundary problem energy. Problem given is thenajant to that of standard fem, except that
integrals and functions are calculated along boundaryeftmputational domain. Generally, from a solver
user point of view, Dirichlet boundary conditions need ndar@actions compared to the use of normal
elements.

E.2.2 Some practical aspects

Typical singular points in the solution are points wherermary condition or material parameters change
abruptly or vertex type singularities (such as the innerenafth I-shaped beam or a crack tip). In these cases
convergence of thg-method is twice that ok-method.

However, it is much more expensive computationally to ugg hjolynomial degree than use many
elements of low degree. Therefore, if possible, mesh sHmittesigned in a way that near nodal singularities
small low degree{ = 1) elements were used. In other parts of the solution domdierevthe solution
is smoother, large elements with high polynomial degreeadreced. As Elmer is nokp-adaptive, and
element polynomial degree is not modified by the solver, ndestign issues must be taken into account for
computational efficiency.

Itis well known that for linear problems it is possible reduhbe size of the global problem by leaving out
all bubble functions. This procedure is often called corsd¢ion. In EImer condensation for local stiffness
matrix may be done (and is adviced to be done) for linear syst@hich do not need stabilization. Con-
densation is done by routir@ondensateP located in modulé&olverUtils . More precisely routine is
expressed as

CondensateP(N, Nb, K, F, F1)

whereNis the number of all nodal, edge and face degrees of freebrthe number of internal degrees of
freedom K local stiffness matrixE local force vector ané1 optional second force vector.

E.3 ElmerSolver services for higher-order elements

This section describes some of the services relatpettements, which are included in different parts of the
Solver.

E.3.1 Properties ofp element

For determiningy element properties there are several utilities. First bit & possible to check if some
elementis @ element by checking elemensfElement flag. If flag is set to true, element igpaelement.
Functions

isPTriangle( Element )
isPTetra( Element )

isPPyramid( Element )
isPWedge( Element )

check if given element ig type triangle, tetrahedron, pyramid or wedge. They are émgnted because
usedp reference triangles, tetrahedrals, pyramids and wedgedifferent than those defined for Lagrange
type elements. For determining maximum degrees of elenugrgsor faces, routines

getEdgeP( Element, Mesh )
getFaceP( Element, Mesh )

return the maximum polynomial degree of elements edgesesfavhen giveilement and finite element
meshMesh.
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E.3.2 Fields related top elements

In moduleTypes , typeElement_t has followingp element related fields

INTEGER :: TetraType
LOGICAL :: isPElement
LOGICAL :: isEdge
INTEGER :: localNumber
INTEGER :: GaussPoints

Tetratype  defines type of tetrahedralelement. For nontetrahedral elemem&tratype=0 , for
tetrahedral element®etratype= {1, 2}.

isSPElement definesif an elementis of higher-ordmPElement=.TRUE. for p-elements,FALSE.
otherwise.

isEdge defines if an element is edge element for some higher entty,edge or face of a 2d or 3d
element. IfisEdge=.TRUE. elementis an edgeiALSE. otherwise.

localNumber defines the local number of boundary elements, that is wbichl edge or face number
boundary element has in respect to its’ parent element.

GaussPoints  defines the number of gauss points for element. Value is leéifromn = (22z+1)d,
whered is element dimension ang, element maximum polynomial degreeis rounded up to nearest inte-
ger. VariableGaussPoints has enough quadrature points to integrate function of @éyre accurately.

When modifying local solver to support higher order elersetite maximum size for some element
stiffness matrix or force vector may be obtained from mesfatée MaxElementDOFs . This variable is
set by the mesh read-in process to the maximum degrees dbfrefor single element in mesh.

E.3.3 Higher order basis and element mappings

Basis for higher order elements is defined in modeldementBase . Module contains also definitions
for ¢ andy -functions and Legendre polynomials. These definitionehmen generated to implicit form
with symbolic progranMaple [1] up topmax < 20. This mean that no recursion is needed for generation of
values of Legendre polynomials or other lower level compdsibased on them, if us@d< puax.

Generally higher order basis functions take as their argusrti@e point in which to calculate function
value and indexingm(s, j) orm(i, 7, k) depending on the function type. All edge functions take iditoh
to these parameters a special optional flag, naimeigrtEdge , which defines if direction of edge basis
function needs to be inverted. In Elmer all edges are glglalersed from smaller to higher node. That s,
let A and B be global node numbers of edges. The varying parameter effedgtion then varies between
[-1,1] from A — B globalle. Inversion is then used for enforcing global couitly of edge basis functions
which are not properly aligned. Edge rule is presented imdi§.3.3

E—

A B

Figure E.1: Global direction of edge. For global node indexe< B

Most of the face functions take as their optional argumeatitical numbering based on which face
functions are formed. This local direction is formed ac@ogdo global numbers of face nodes. There are
rules for triangular and square faces. L&tB,C be global nodes of a triangular face. Globally face is
aligned so thatd < B < C. For square faced = min{v,;} wherev, are global nodes of square face and
B, C are nodes next to nodé on face. Square face is aligned by rlle< B < C for these nodes. These
rules are presented in figuEe3.3

Tetrahedral element is an exception to the above interfdes,i.e. edge and face functions of tetrahedral
elements take type of tetrahedral element as their optanmgaiment. This is due to fact that it is possible
to reduce any tetrahedral element to one of the two refer@ti@hedral elements for which all edges and
faces are defined so that their local orientation matchdsaglarientation. This means, that for tetrahedral
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C D

L. L

A B A B

Figure E.2: Global direction of triangular and quadrilatdaces. For global node indexds< B < C; A
has lowest index among indexes of face.

elements, global continuity does not need to be enforcaatoper reduction to one of the two reference
elements has been made.

Mappings from element nodal numbers to differenélement edges or faces are defined in module
PElementMaps . Mappings generally define which nodes of element belongttain local edge or face
of elements. Mappings to elements edges, faces and from tfada@cal edge numbers may be obtained from
routinesGetElementEdgeMap , GetElementFaceMap andGetElementFaceEdgeMap . Mappings
may also be accessed by via methgds T. P.Map, whereT. is element name anB. = {Edge,Facgis
part of element to get map for. RoutigetElementBoundaryMap  returns mappings for element bound-
aries depending on element type.

For example, to get global nodes for brick face numbheone would use the followingortran90
code

map(1l:4) = getBrickFaceMap(4)
nodes(1:4) = Element % Nodelndexes(map)

E.4 Higher-order elements

Let A1, X2, Ag € {£¢, £n, £(} and additionally), A; = ¢.

E.5 Line

Figure E.3: Line element

E.5.1 Nodal basis

[t
|
[782%

—
|+ o
s
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E.5.2 Bubble basis

LY = ¢i(€),i=2,....p
E.6 Quadrilateral
(2 n A Us
A 1 A
......................... .»
-1 1)¢
(%1 -1 ;2

Figure E.4: Quadrilateral element

E.6.1 Nodal basis

1
Moo= J0-90-n)
Ny = L0481-n)
Ny = 04801 +n)
Ny = Z0-90+n)
E.6.2 Edge basis
NP = -, =2,
N&D = %(1—1—5)@(17),2’22,...,19
N = 04, =2,
1
N = S0 -9, i=2p
E.6.3 Bubble basis
Nyl = @i(&)e;(n)

wherei,j > 2, i+j=4,...,p
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E.7 Triangle

U1 0 U2

Figure E.5: Triangle element

E.7.1 Nodal basis

1 1
Ly = 5( - —%77)
1 1
Ly = 5(14—5—%77)
. n
L, = \/§

E.7.2 Edge basis

E.7.3 Bubble basis

N7(7(L)()j,7z) = L1L2L3P1(L2 - Ll)jpl (2L3 — 1)”

wherej,n=0,...,i—3,j+n=i—3,i=3,...,p
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A
¢
() : . U7
: |
v : K
A | ;A
: ]
-------- L e .---.->
: 3
vy U3
P 2
U1 >U2

Figure E.6: Brick element

E.8 Brick
E.8.1 Nodal basis

Nio= g1-90-n-¢)

Ny = S1+O1-m-Q)
Ny = g0+O1+n1-0)
Ni o= g1-90+n1-¢)
Ny = L1-91-m+Q)
Ne = $(0+01-n(+0)
Ne = S0+O1+n)+0)
Ny = S1-91+m+Q)

CSC - IT Center for Science [@)sv-nD |



E. Higher-order finite elements 113
E.8.2 Edge basis
M= a0 -0 -0
NE = 21461~
B= 1000+ -0
M= e -90-0)
Y= 1600 -90 - )
2= a0 o0 )
NEL = 200490 +n)
NS = 2600 -9 +n)
NS = 2o - m+0)
NS = Zim( 4640
NEL = 2o +m+0)
NS = 2o -6+
E.8.3 Face basis
NOER = (1~ )6i(6)65()
NOESD = (1= 06:(€)05 )
NS = 20— Ou(m)as ()
NS = 2 (14 )6i(€)65()
NSEST = (14 Q0u()6;(n)
NERST = 214 i) ()
wherei,j =2,3,....p—2,i+j=4,5,....p
E.8.4 Bubble basis
Nisky = 61(E)95 (M 6r ()
wherei, j,k=2,3,....p—4,i+j+k=6,7,....p
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------ =
Figure E.7: Tetrahedral elements of types 1 and 2
E.9 Tetrahedron
E.9.1 Nodal basis
1 1 1
L = -(1-¢6——=n——=
1 1 1
Ly = -(1+&6——=n——=
V3 1
Ly = -—(n—-—
3
Ly = gC
E.9.2 Edge basis
Type 1
Nl(ilz) = Lng(,OZ‘(LQ—Ll), 222,...,]9
Nl(ilg) = L1L3(,OZ‘(L3—L1), 222,...,]9
Nl(ifl) = L1L4(,OZ‘(L4—L1), 222,...,]9
Nl(zlg) = L2L3(,OZ‘(L3 —LQ), 7 :2,...,]9
Nl(zfl) = LQL4Q0¢(L4—L2), 7 :2,...,]9
Nl(if) = L3L4(pi(L4 —Lg), 1=2,...,p
Type 2
Nﬁ’f) = L3Lopi(Ly —L3), i =2,...,p
Edgeq(1,2),(1, 3),(1,4),(2,4) ja (3,4) according to type 1.
E.9.3 Face basis
Type 1
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NP = LiLsLsPi(Ly — L1)P;(2Ls — 1)
S(if)) = L1LaLyPi(Ly — L1)Pj(2L4 — 1)
7511(1334)) = L1L4L3Pi(Ls — L1)Pj(2Ls — 1)
i) = LoLgLaP(Lg — Ly)Pj(2Ls — 1)
Type 2
(32— Ly Ly Py(Ls — L1)Py(2Ls — 1)
i) = LsLaLaPy(Ls — Lg)P;(2Ly — 1)

wherei, j =0,1,2,...,p—3,i+j=0,1,...,p— 3. Faceq1, 2,4) and(1, 3, 4) defined according to type
1.

E.9.4 Bubble basis

N o = LiLaLsLaPy(Ly — L) P;(2Ls — 1) Pu(2Ly — 1)

wherei,j,k=0,1,...,p—4,i+j+k=0,1,...,p—4

E.10 Pyramid

Figure E.8: Pyramidal element
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E.10.1 Nodal basis

1— ) —
To(c,t) = (7\/510
2(1- %)
j
Ti(c,t) = (7\/5);’—0
2(1- %)
Bo= T(& 0T - )
= TEOT0.00 - 5)
= TEOT0.00 - S5)
Pi= Tl 0T 01 - )
P = %Q
E.10.2 Edge basis
PID = P&, QP O)pil€)
PP = Py(€,n,OPs(E,n, Qi)
PAD = Pye,m, OPs(E 1 Q)pil€)
PEY = Pi,m, OPA(E . Qi)
PP = PEnOPsEn Ol + 1+ <o)
PEP = RAemOPEn Opl—5 + 5 +2)
PEP = R(emOPsEn Opl—5 — 1+ =)
PR = PenOPEn Onls — 3+ o)
E.10.3 Face basis
Square face
PUZSY = P&, O Ps(&m Q)i (€)p; (n)
wherei,j =2,...,p—2,i+j=4,...,p
Triangular faces
PO = PUE M QP& 0, Q) Ps(E,m, O Pi(Pa(€,m. C) — Pu(&,m, Q) Py (2Ps(€,1,C) — 1)
PSS = Pa(€m, Q)P (&, Q) P (&, m, QP (Pa(€,m, C) — Pal&,m, Q) Py (2P5(€,1,¢) — 1)
PEA = Py(€m, QP& Q) P (&, m, QP (Pa(€,m, ) — Pa(&,, ) P (2P5(€,1,¢) — 1)
PUSS = Pa(€n QO PLE N Q) P, m, QP (Py(€,m, C) — Pal&,m, Q) Py (2P5(€,1,C) — 1)
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wherei,j =0,...,p—3,i+j=0,...,p— 3andP;, P; Legendre polynomials.

E.10.4 Bubble basis

£ o <
1_%)PJ(1_%)PI€(\/§)

Pr(r?()ihi,k) = Pl (57 , C)P?) (57 , C)PS (57 , C)PZ(

wherei, j,k=0,...,p—4,i+j+k=0....,p—4andF;, P;, P, Legendre polynomials

E.11 Wedge

Figure E.9: Wedge element

E.11.1 Nodal basis

1 1
L= 50 _ﬁn)
L, = ‘g L
2 5( +§_\/§77)

3
Ly = %n
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1
H, = §L1(1 - )
1
Hy = §L2(1 - Q)
1
H; = §L3(1 - C)
1
H, = §L1(1 +q)
1
Hy; = §L2(1 + g)
1
Hg = §L3(1 + g)
E.11.2 Edge basis
g = Lo, - moa
i—1 = 5 1 2%‘( 2 — 1)( —C)
1
Y = gL2Lspi(Ls — L2)(1 =€)
1
Hz(i D= 5L3L1(,0¢(L1 - L3)(1 - C)
1
YY) = g Lalspi(ls = La)(1+ ()
1
HEY = s Lslepi(le = Ls)(1+ ()
1
Y = s Lelapi(la = Le)(1+ ()
Hi(}f) = Li¢i(Q)
HZ(EIS) = L2¢i(Q)
HEY = Lyi()
E.11.3 Face basis
Triangular faces
1
HOED = (1= OPi(L2 = L)P;(2Ls — )i LaLy
1
S{i}? 51+ QFi(Le — L1)Pj(2Ls — 1) L1 LaLs
wherei,j =0,1,...,p—3,i+j =0,1,...,p— 3 andP;, P; Legendre polynomials.
Square faces
7(7:(12]5)4) = @i(L2 = L1)$;(¢) L1 Ly
7(7?(7?,}'6)75) = ¢i(Ls — L2)¢;(¢)LaLs
GO = Gu(Ly — La)di(OLsL
wherei,j =2,...,p—2,i+j=4,...,p.
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E.11.4 Bubble basis
Y = k() L1LaLsPy(Ly — L1)P;(2Ls — 1)
wherei,j =0,...,p—5,k=2,....p—3,i+j+k=2,...,p—3.
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