JGimp User Manual
version 0.8

Michael Terry
scrumpty@sourceforge.net

15th May 2003

Contents

1 Introduction

1.1 Feature sUmMmary ot vttt e e e e e e
1.2 System requirements Lo e
1.3 Quickstart
1.4 Project history e
1.5 Getting further help
2 Installing JGimp
2.1 Linuxinstallation
2.2 Windows installation o o
2.2.1 Putting jvm.dll’s directory in your PATH
2.2.2 Using theinstaller oL,
2.2.3 Compiling from sourceo
2.2.4 Installing the compiled binaries by hand
2.3 Testing the installation o o

3 Making Your Own Plug-Ins and Extensions

Chapter 1

Introduction

JGimp is an architecture that allows developers to create Java- and Jython-based plug-
ins and extensions for the GIMP. Plug-ins allow developers to add functionality to the
GIMP (through "filters" that operate on a given image or layer), while extensions are
Java or Jython applications that use the GIMP as a "back-end" service providing image
manipulation capabilities.

1.1 Feature summary
JGimp offers developers the following features:

e Plug-ins for the GIMP can be written in Java or Jython, allowing developers to use
the rich set of UI techniques, widgets, libraries, and language features available for
these two languages. The Desaturate plug-in provides one example of a filter with a
dialog box written completely in Java, including a preview.

e Java/Jython code can use the GIMP as an image manipulation engine/service by
implementing the “JGimpExtension” interface. This essentially gives Java/Jython
developers the full power of the GIMP within their own application. Possible uses of
this capability include:

— Developing Java/Jython-based image manipulation server applications for
dynamically-generated graphics

— Creating new image manipulation applications in Java/Jython using the GIMP
as the engine
1.2 System requirements
JGimp runs on the Linux or Windows platforms, and has the following requirements:

e JDK 1.4 or later

e GIMP 1.2.2 or later

e Optional: Jython 2.1 or later (http://www.jython.org)
e A healthy amount of RAM :)

To build it from source, you will also need:

e Ant 1.5.1 or later (http://ant.apache.org)

CHAPTER 1. INTRODUCTION 3

e GCC and GNU make for Linux, Microsoft Visual C++ 6.0 for Windows

The versions listed above represent the development versions we use; you might be able
to compile JGimp using other versions of the software. For example, there is not much
dependent on JDK 1.4 at this point, so a port to versions JDK 1.2 or 1.3 could probably
be made with minimal effort (you would have to change how the JVM is loaded in the JNI
code in jgimp.c, and change any 1.4-specific code in the Java code itself).

1.3 Quick start

Two sample Java plug-ins, ImageDividerPlugln and DesaturatePlugln, illustrate how
to use this architecture to write Java-based plug-ins. The source for these plug-ins
can be found in jgimp/src/java/edu/gatech/cc/mterry/plugin. Two Jython scripts,
imagedividernaive.py and imagedivider.py, show the equivalent in Jython. They are
located in jgimp/src/jython.

The included Java and Jython plug-ins demonstrate the basics of how to use this
architecture: how to make PDB calls (the GIMP’s procedural database, which keeps
track of all functions and plug-ins), how to read and write pixels from images in the
GIMP, how to install the plug-in in the GIMP, and so on. A README file in
jgimp/src/java/edu/gatech/cc/mterry/plugin provides a brief overview of the process
for Java plug-ins, including where to copy your plug-ins once you have made them. The
jython script directory, jgimp/src/jython also has sample scripts and a README offering
the type of information for Jython scripts. All examples are thoroughly commented and
can easily serve as the basis for new plug-ins.

Aside from these examples, there are two other resources included with this distribution:
the javadocs and this manual. Most of the Java API is documented. To generate the
javadocs, go to jgimp/src/java and type ant javadocs. This will create the javadocs and
place them in jgimp/src/java/dist/javadoc.

1.4 Project history

This project was originally started to support research into alternative interfaces for
image manipulation. = The idea was to prototype novel interfaces in Java, using
the GIMP as the image manipulation engine. For more information about this re-
search, see the section entitled "Side Views and Supporting Open-Ended Tasks" at
http://www.cc.gatech.edu/ “mterry/papers.

We are currently working on a version that integrates directly with the GIMP, rather
than being loaded as a plug-in. By taking this tact, we can gain access to some internal
GIMP information, such as the entire image rendering, which is not possible with the current
plug-in architecture. Access to these data is essential to building full-fledged, standalone
Java-based image manipulation applications that use the GIMP as their backend. This
direct patch is still very alpha at this time.

1.5 Getting further help

If you have a question that is not answered by the docs or code, you can send a question to
our discussion list: jgimp-developers@lists.sourceforge.net

Chapter 2

Installing JGimp

At a minimum, to run (not compile) JGimp, you need JRE 1.4 or later and GIMP 1.2.2
or later. Other versions of GIMP in the 1.2.X series may work as well. Platform-specific

instructions follow for compiling and installing JGimp on Linux and Windows platforms.
TBD: NEED INSTRUCTIONS FOR JYTHON COMPILATION later in this document

2.1 Linux installation
To compile JGimp you need:

e Ant 1.5.1 or later (http://ant.apache.org)

e JDK 1.4 or later

e a recent version of GCC (we use 3.2.2 as of this writing)
e GNU make

e optionally, Jython 2.1 (http://www.jython.org) or later

Other versions of Ant, GCC, and Jython may work as well; these are the versions we use
and thus know work.
Once these tools are installed, follow these steps:

1. From the root directory, run configure. You will probably need to pass in at least
two flags: --prefix and --with-jdk-prefix. If you want Jython support, add
--with-jython and make sure jython. jar (the main jar file distributed with Jython
2.1) is in your CLASSPATH (or it simply won’t compile):

(a) --prefix should point to the base directory of your GIMP installation
(b) --with-jdk-prefix should point to the base directory of your Java installation

For example:
./configure --prefix=/usr/local/gimp \
--with-jdk-prefix=/usr/local/java

(¢) or, with Jython support:

./configure --prefix=/usr/local/gimp \
--with-jdk-prefix=/usr/local/java --with-jython

2. Type make. If all goes well, both the Java code and C code will compile into their
respective libraries.

CHAPTER 2. INSTALLING JGIMP 5

3. Next, type make install. This will install JGimp within the GIMP’s directory, so
be sure you have permissions for that directory.

4. If you compiled with Jython support, make sure jython.jar is in your CLASS-
PATH, or simply copy it to the same location as the other JGimp jar files
(GIMP/1ib/gimp/1.2/jgimp/javafiles, where GIMP is the base directory of your
GIMP installation).

2.2 Windows installation

This section provides instructions for installing JGimp using the installer, compiling the
source, and installing the binaries by hand. In all cases, you must follow the step in the
next section.

2.2.1 Putting jvm.dll’s directory in your PATH

Whether you are using an installer or installing the binaries by hand, you must have the
parent directory of jvm.d1l in your PATH. This dll is needed by jgimp.exe to start up
the Java virtual machine. jvm.d11 is part of the Java package, and is typically found in
JAVA_BASE_DIR\jre\bin\client (e.g., c:\j2sdk1.4.1_01\jre\bin\client for the SDK,
c:\Program Files\Java\j2rel.4.1_01\bin\client for the JRE only). Locate this file
and note the directory in which it resides. Then go to the Control Panel, open up the
System Control Panel, go to the "Advanced" tab, click on "Environment Variables" and
then add the path to jvm.d1ll to the System-wide PATH variable (making sure that it is
separated by the other paths with a ";").

2.2.2 Using the installer
TDB

2.2.3 Compiling from source
To compile JGimp from source, you need the following:
e Microsoft Visual C++ 6.0
e JDK 1.4 or later
e Ant 1.5.1 or later (http://ant.apache.org/)
e GIMP, version 1.2.2 or later

e gimp-dev and glib-dev libraries (http://www.gimp.org/~tml/gimp/win32/downloads.html;
at the time of this writing, these files are http://www.gimp.org/~tml/gimp /win32/gimp-
dev-1.2.4-20030115.zip and http://www.gimp.org/~tml/gimp/win32/glib-dev-2.2.1)

e optionally, Jython 2.1 or later (http://www.jython.org)

Once you have everything, you will build the library in two steps: first, the Java portion,
then the C-library. You must follow the steps in the order given, since the Java build process
creates files the C-library depends on. To compile everything:

1. Create the directory jgimp/Windows_port/support_files.

CHAPTER 2. INSTALLING JGIMP 6

10.

Unzip the gimp-dev and glib-dev zip files into
jgimp/Windows_port/support_files/gimp_dev and
jgimp/Windows_port/support_files/glib_dev, respectively. You should end up
with a set of directories under gimp_dev that include bin, include, 1ib, and man,
with a similar set of directories under glib_dev.

From a command prompt, change into jgimp/src/java and if:

(a) you do not want Jython support, just type ant.

(b) you do want Jython support, first make sure jython. jar is in your CLASSPATH.
jython.jar must be in your CLASSPATH at both compile and runtime, so you
should add it to the environment variables for the entire system. Once it is in
your CLASSPATH, type ant all-jython.

To build the javadocs, type ant javadocs.

With the Java portion built, you can now build the C-portion of the library. Open up
the project workspace: jgimp/Windows_port/Windows_port.dsw.

You will need to set up some paths within the project to customize to your own
particular system:

(a) Open up the project settings (Project->Settings)

(b) Select "All Configurations" in the "Settings For:" drop-down box
)
)

(c

(d) Make sure your "Additional include directories" include the following paths:

Go to the C/C++ tab and select "Preprocessor” from the Category drop-down

i. the path to the gimp development include directory (should be something
like . .\support_files\gimp_dev\include)

ii. the path to the glib development include directory (should be something like
. .\support_files\glib_dev\include\glib-2.0)

iii. the path to the glib development lib include directory (should be something
like . .\support_files\glib_dev\1lib\glib-2.0\include)

iv. the path to the JNI include directory (something like
c:\j2sdk1.4.1_01\include)

v. the path to the JNI win32-specific directory (something like
c:\j2sdk1.4.1_01\include\win32)

(e) Once you have configured all those paths, the final set of include directories
should look something like this:

. .\support_files\gimp_dev\include,

. .\support_files\glib_dev\include\glib-2.0,

. .\support_files\glib_dev\1lib\glib-2.0\include,
c:\j2sdkl.4.1_01\include,
c:\j2sdk1.4.1_01\include\win32

Make sure that JGIMP _COMPILE AS PLUGIN is defined by the preprocessor in
the Preprocessor definitions text box (in the same tab as in the above step).

Make sure you have put jvm.d11l’s parent directory in your PATH. See Section 2.2.1.

Set the active configuration to “jgimp - Win32 Release” (in Build -> Set Active Con-
figuration...).

Build all. There will be some warnings, but everything should compile if you have all
the paths set up correctly.

CHAPTER 2. INSTALLING JGIMP 7

2.2.4 Installing the compiled binaries by hand

To manually install the binaries you have built, you need to copy the files into the GIMP
program directory. GIMP will be installed in some place like c:\Program Files\GIMP.
We'll abbreviate that to GIMP in the following instructions.

1.

It’s assumed you have built (or have the binaries for) jgimp.exe, jgimp.jar,
desaturate.jar, and image_divider.jar. If you compiled all this by hand (as
described above), then the jar files will be in the jgimp/src/java/dist directory.
jgimp.exe will be in the jgimp/Windows_port/jgimp/Release directory.

. Copy jgimp.exe to the plug-ins directory of the GIMP (eg.,

GIMP\1lib\gimp\1.2\plug-ins).
Make a directory under GIMP\1ib\gimp\1.2 called jgimp.
Under jgimp, make a directory named javafiles.

If you want Jython support (and you compiled it in), create another directory off of
jgimp called jython_scripts.

It is important to get the name and punctuation correct when creating these directo-
ries, as JGimp will look here to load its various support files.

Copy jgimp. jar, desaturate. jar, and image_divider. jar to
GIMP\1ib\gimp\1.2\jgimp\javafiles. Optionally, you can also copy jython.jar
to the same directory, if you don’t want to put it in your CLASSPATH.

For Jython support, copy the scripts from jgimp\src\jython_scripts to
GIMP\1ib\gimp\1.2\jgimp\jython_scripts.

Make sure jvm.dll’s directory is in your PATH. See Section 2.2.1.

2.3 Testing the installation

1.

Try starting up the GIMP and cross your fingers :) If everything went well, then you
should have some new Java-based filters installed. Open up an image, then right-
click on it. Check to see if Filters->Digital Cameras->Nikon Image Divider is there,
and check if Filters->Colors->Desaturation Tools->Desaturation Dialog... is there.
If those two items are there, then you’ve installed everything correctly! If you’ve
installed Jython support, then there will also be Jython versions of the Nikon Image
Divider plug-in.

Now you can install your own Java-based plug-ins and extensions in the
GIMP/1ib/gimp/1.2/jgimp/javafiles directory. You can also put Jython scripts
in the GIMP/1ib/gimp/1.2/jgimp/jython_scripts directory.

Chapter 3

Making Your Own Plug-Ins and
Extensions

More information will be available here, time permitting... In the meantime:

To create a plug-in, implement the org.gimp. jgimp.plugin.JGimpPlugIn interface
and use the sample Java plug-ins in jgimp/src/java/edu/gatech/cc/mterry/plugin
as a guide on how to construct your own Java-based plug-ins.

To write a Jython script, check out the README in jgimp/src/jython and use the
sample Jython scripts in that directory as a guide.

Be sure to check out the javadocs for the library. You can build these by
cd’ing into jgimp/src/java and typing ant javadocs. They will be placed in
jgimp/src/java/dist/javadoc.

Some random notes until better documentation comes along;:

You can place any support jar/class files needed by your plug-in in the same directory
as your plug-ins (GIMP/1ib/gimp/1.2/jgimp/javafiles). JGimp will automatically
load them.

JGimp will add the environment’s CLASSPATH to its own CLASSPATH when search-
ing for classes.

JGimp sets two keys in the gimprc (file: jgimp_javafiles_dir and
jgimp_jython_script_dir. You can customize these to point to other direc-
tories, if you wish.

The javadocs for JGimp use an extra javadoc tag, @pdb, which is used to indicate
which GIMP PDB functions are directly called by that method. This information is
listed in the generated javadocs.

Jython automatically converts return parameter lists having a single element into an
atomic element (rather than as a 1-element list).

Some notes on the interactive Jython interpreter:

It does not allow you to install plug-ins at this time.

It always appears when booting up if you have Jython support installed (no menu
entry yet).

CHAPTER 3. MAKING YOUR OWN PLUG-INS AND EXTENSIONS 9

e It automatically sets the variable gimpApp to point to a org.gimp.jgimp.GimpApp
object. From this object you can do everything else. For example:

— myImage = gimpApp.createRGBImage (100, 100) creates a new RGB image of
100x100 pixels

e You can type importPlugInNames () at the prompt and it will import all PDB names
into the namespace. Then you can do things like:

— myImage = gimp_image_new(100, 100, 0) # don’t need to go through
gimpApp object, can call PDB functions directly

